Plenary Keynote: Henrik Lund Professor at Aalborg University New insights into Smart Energy Systems – Theory, Concepts and Applications ## **Abstract** This presentation includes new insights into the concept, theory, and application of smart energy systems. The concept was introduced in 2012 and shortly after received a scientific definition. As opposed to, for instance, the smart grid concept, which puts a sole focus on the electricity sector, smart energy systems include the entire energy system in its approach to identifying suitable pathways to the green transition. Based on the 3rd edition of "Renewable Energy Systems", a theory of two smart energy systems hypotheses has been formulated. First, that one must take a holistic and cross-sectoral smart energy system's approach to be able to identify the best solutions for an affordable and reliable transition of the energy system into a carbon neutral society. Second, that subsector studies (no matter if they consider the role of a specific technology or the role of a region or country) should aim at identifying the role to play in the context of the overall system transition rather than aim at decarbonising the sub-sector on its own. The concept and theory have been applied to the analysis of the need for energy storage and electricity balancing in a future climateneutral society. In five Smart Energy System Integration Levels (SESIL), progressing from a sole electricity sector focus to a fully integrated system of electricity, heating, cooling, industry, transport, and materials, optimal investments in storage and resulting levels of curtailment are identified. It is illustrated how an overall least-cost solution is only identified in a fully integrated smart energy system, with affordable types of energy storage and little curtailment that cannot be found in a sole electricity sector approach.