

7th International conference on Smart Energy Systems

Formulation and assessment of multi-objective sizing: application to low temperature DH networks

Yannis MERLET

 $\langle \rangle_{0}^{\circ}$

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

II. Methodolodgy for the optimal sizing

III. Validation method for the framework

IV. Validation results

V. Conclusion

Optimization problem

- Decision parameters:
 - diameters of the pipes
 - (insulation thickness)
- Objectives :
 - CAPEX
 - Pumping cost
 - (thermal power)
- Constraints :
 - Satisfaction of the consumers
 - Fluid velocity
 - Absolute pressure

Inputs

kWh

Meta-heuristics known issues :

- Interpretability
- Parametrization

Quality of the results of our implementation considering those issues ?

II. Methodolodgy for the optimal sizing

III. Validation method for the framework

IV. Validation results

V. Conclusion

Validation method

7th International conference on Smart Energy Systems

Yannis MERLET

21-22/09/2021

II. Methodolodgy for the optimal sizing

III. Validation method for the framework

IV.Validation results

V. Conclusion

10

7th International conference on Smart Energy Systems

21-22/09/2021

Validation Test case

10 Substations + 9 branches : convergence

Reference solution and optimization solution are close

Solutions with higher pumping cost may have a critical substation in the branches

12

10 Substations + 9 branches

II. Methodolodgy for the optimal sizing

III. Validation method for the framework

IV. Validation results

V. Conclusion

- Presentation of an optimal sizing method for pipe diameters in DH networks
- Validation methodolodgy for optimal sizing in DH network approaches
- Validation of the framework with branched networks
 - Elaboration of a reference solution for a branched test case
 - Comparison to optimization results
 - \rightarrow Great quality of the Pareto front and good convergence
- Comparison to a local sizing method
 - Optimal solution are at least 7% less costly in tested cases
 - Qualitative difference in the solutions

Thank you for your attention !

Any questions ? Yannis.merlet@cea.fr

16