
TIM TØRNES PEDERSENTTP@MPE.AU.DK
22 SEPTEMBER 2021 PHD FELLOW

DEPARTMENT OF MECHANICAL AND PRODUCTION 
ENGINEERING

AARHUS
UNIVERSITY

Slide 1 of 8

Presentation by:
Tim Pedersen

PhD Fellow 
Aarhus University – Denmark 

ttp@mpe.au.dk



TIM TØRNES PEDERSENTTP@MPE.AU.DK
22 SEPTEMBER 2021 PHD FELLOW

DEPARTMENT OF MECHANICAL AND PRODUCTION 
ENGINEERING

AARHUS
UNIVERSITY

INTRODUCTION

Motivation: 

Slide 2 of 8



TIM TØRNES PEDERSENTTP@MPE.AU.DK
22 SEPTEMBER 2021 PHD FELLOW

DEPARTMENT OF MECHANICAL AND PRODUCTION 
ENGINEERING

AARHUS
UNIVERSITY

INTRODUCTION

Motivation: 
• Energy system optimization models 

Slide 2 of 8



TIM TØRNES PEDERSENTTP@MPE.AU.DK
22 SEPTEMBER 2021 PHD FELLOW

DEPARTMENT OF MECHANICAL AND PRODUCTION 
ENGINEERING

AARHUS
UNIVERSITY

INTRODUCTION

Motivation: 
• Energy system optimization models 

• Complex political agendas 

Slide 2 of 8



TIM TØRNES PEDERSENTTP@MPE.AU.DK
22 SEPTEMBER 2021 PHD FELLOW

DEPARTMENT OF MECHANICAL AND PRODUCTION 
ENGINEERING

AARHUS
UNIVERSITY

INTRODUCTION

Motivation: 
• Energy system optimization models 

• Complex political agendas 

• Solutions with desirable qualities other than cost

Slide 2 of 8



TIM TØRNES PEDERSENTTP@MPE.AU.DK
22 SEPTEMBER 2021 PHD FELLOW

DEPARTMENT OF MECHANICAL AND PRODUCTION 
ENGINEERING

AARHUS
UNIVERSITY

INTRODUCTION

Motivation: 
• Energy system optimization models 

• Complex political agendas 

• Solutions with desirable qualities other than cost

• Land use, transmission expansion, equality in energy generation, transition speed

Slide 2 of 8



TIM TØRNES PEDERSENTTP@MPE.AU.DK
22 SEPTEMBER 2021 PHD FELLOW

DEPARTMENT OF MECHANICAL AND PRODUCTION 
ENGINEERING

AARHUS
UNIVERSITY

INTRODUCTION

Motivation: 
• Energy system optimization models 

• Complex political agendas 

• Solutions with desirable qualities other than cost

• Land use, transmission expansion, equality in energy generation, transition speed

• Improve on Modelling to Generate Alternatives (MGA) [1]

[1] DeCarolis, Joseph F., et al. "Modelling to generate alternatives with an energy system optimization model." Environmental Modelling & Software 79 (2016):

Slide 2 of 8



TIM TØRNES PEDERSENTTP@MPE.AU.DK
22 SEPTEMBER 2021 PHD FELLOW

DEPARTMENT OF MECHANICAL AND PRODUCTION 
ENGINEERING

AARHUS
UNIVERSITY

INTRODUCTION

Motivation: 
• Energy system optimization models 

• Complex political agendas 

• Solutions with desirable qualities other than cost

• Land use, transmission expansion, equality in energy generation, transition speed

• Improve on Modelling to Generate Alternatives (MGA) [1]

Research question: 

[1] DeCarolis, Joseph F., et al. "Modelling to generate alternatives with an energy system optimization model." Environmental Modelling & Software 79 (2016):

Slide 2 of 8



TIM TØRNES PEDERSENTTP@MPE.AU.DK
22 SEPTEMBER 2021 PHD FELLOW

DEPARTMENT OF MECHANICAL AND PRODUCTION 
ENGINEERING

AARHUS
UNIVERSITY

INTRODUCTION

Motivation: 
• Energy system optimization models 

• Complex political agendas 

• Solutions with desirable qualities other than cost

• Land use, transmission expansion, equality in energy generation, transition speed

• Improve on Modelling to Generate Alternatives (MGA) [1]

Research question: 
• How do we explore all near-optimal model solutions?

[1] DeCarolis, Joseph F., et al. "Modelling to generate alternatives with an energy system optimization model." Environmental Modelling & Software 79 (2016):

Slide 2 of 8



TIM TØRNES PEDERSENTTP@MPE.AU.DK
22 SEPTEMBER 2021 PHD FELLOW

DEPARTMENT OF MECHANICAL AND PRODUCTION 
ENGINEERING

AARHUS
UNIVERSITY

INTRODUCTION

Motivation: 
• Energy system optimization models 

• Complex political agendas 

• Solutions with desirable qualities other than cost

• Land use, transmission expansion, equality in energy generation, transition speed

• Improve on Modelling to Generate Alternatives (MGA) [1]

Research question: 
• How do we explore all near-optimal model solutions?

• What information do the near-optimal solutions provide?

[1] DeCarolis, Joseph F., et al. "Modelling to generate alternatives with an energy system optimization model." Environmental Modelling & Software 79 (2016):

Slide 2 of 8



TIM TØRNES PEDERSENTTP@MPE.AU.DK
22 SEPTEMBER 2021 PHD FELLOW

DEPARTMENT OF MECHANICAL AND PRODUCTION 
ENGINEERING

AARHUS
UNIVERSITY

ENERGY SYSTEM MODEL

Slide 3 of 8Slide 11 of 8



TIM TØRNES PEDERSENTTP@MPE.AU.DK
22 SEPTEMBER 2021 PHD FELLOW

DEPARTMENT OF MECHANICAL AND PRODUCTION 
ENGINEERING

AARHUS
UNIVERSITY

ENERGY SYSTEM MODEL

300 GW

100 GW

Line capacity

50 GW

25 GW

Line capacity

50 GW

25 GW

Carriers

Wind
Solar
OCGT
Battery

H2

 Tech capacity

• Model of European power sector [2]

[2] Schlachtberger, David P., et al. "The benefits of cooperation in a highly renewable 
European electricity network." Energy 134 (2017)
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• Maximum 10% increase in system cost from optimum

• 500.000 near-optimal solutions
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Findings
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