

Powered by

/nnovation Fund Denmark

Vestas.

Meng Yuan*, Jakob Zinck Thellufsen, Peter Sorknæs, Henrik Lund, Yongtu Liang

[1] Yuan M, Thellufsen J Z, Sorknæs P, Lund H, Liang Y. District heating in 100% renewable energy systems: Combining industrial excess heat and heat pumps. Energy Convers Manag. 2021;244:114527. <u>https://doi.org/10.1016/j.enconman.2021.114527</u>

Trade-off problem between IEH and HP

Research questions

7th International Conference on Smart Energy Systems 21-22 September 2021

#SESAAU2021

DENMARK

100% renewable smart energy systems

- How to determine 1) the optimal share of IEH and HP in a given DH system, 2) associated RES capacity in a 100% RE system?
- What are the techno–economic impacts on the integrated energy system caused by the integration of IEH and HP under the smart energy systems context?

Methodology

7th International Conference on Smart Energy Systems 21-22 September 2021 #SESAAU2021

2050 Smart Energy Aalborg

- Based on the "Smart Energy Aalborg" project* in AAU, which aims to transit Aalborg to 100% RE in 2050
- The BAU scenario and Energy Vision scenario are adopted as the baseline of this study

Technical potential of IEH in Aalborg

Total IEH potential: 1023 GWh IEH in Energy Vision: 850 GWh

* "Smart Energy Aalborg" research was conducted by the Sustainable Energy Planning Research Group Aalborg University at the request of the city council of Aalborg Municipality and the local municipality-owned utilities and authorities. <u>https://vbn.aau.dk/en/publications/smart-energy-aalborg-energivision-for-aalborg-kommune-2050-2</u>

2050 BAU scenario

2050 Energy Vision scenario

2050 Smart Energy Aalborg

- Based on the "Smart Energy Aalborg" project* in AAU, which aims to transit Aalborg to 100% RE in 2050
- The BAU scenario and Energy Vision scenario are adopted as the baseline of this study

Technical potential of IEH in Aalborg

Total IEH potential: 1023 GWh IEH in Energy Vision: 850 GWh

* "Smart Energy Aalborg" research was conducted by the Sustainable Energy Planning Research Group Aalborg University at the request of the city council of Aalborg Municipality and the local municipality-owned utilities and authorities. <u>https://vbn.aau.dk/en/publications/smart-energy-aalborg-energivision-for-aalborg-kommune-2050-2</u>

Results - Optimal DH planning

Scenarios

- **BAU**: Maintain the status quo of the energy system of 2018 in the year 2050
- Energy Vision: The 100% RE system defined in Smart Energy Aalborg

REF

- Optimal: The optimal 100% RE system obtained by using the proposed

 approach
- IEH@0: The 100% RE system does not utilize IEH in DH
- IEH@Max: The 100% RE system utilizes the max technical potential of IEH in DH

Results of the three-objectives in different scenarios

	Scenarios		Cost [MEUR]	CO ₂ [Mton]	CEEP [TWh]
	Smart	BAU	673	2.374	0.47
	Energy Aalborg	Energy Vision	626	0.044	0.05
	This study	Optimal	621	0.001	0.07
		IEH@0	628	0.001	0.09
		IEH@Max	624	0	0.07

Results of the decision variables in different scenarios

Results - District heating systems

- 20% HP and 40% IEH in the total DH supply under the Optimal scenario
- The larger-scale integration of HP will bring a more balanced DH system

Results - Structure of electricity generation

- A **proper mix** of both HP and IEH technologies in the DH supply will bring larger benefits
- While IEH is a key resource for future low-temperature 4GDH and smart energy systems, it is vital to emphasize that the **HP solution is also feasible**
- This work has provided a reference and a methodology for policymakers and system operators in the design of district heating systems under multiple feasible technical options

Powered by

/nnovation Fund Denmark

kamstrup LOGSTOR

Vestas.

Thank you for your attention!

Meng Yuan 袁梦

imeng.yuan@outlook.com
www.linkedin.com/in/mengyuan01/

More info:

[1] Yuan M, Thellufsen JZ, Sorknæs P, Lund H, Liang Y. District heating in 100% renewable energy systems: Combining industrial excess heat and heat pumps. Energy Convers Manag. 2021;244:114527. https://doi.org/10.1016/j.enconman.2021.114527