

7th International Conference on Smart Energy Systems 21-22 September 2021 #SESAAU2021

Session 1:

Digital tools for refurbishment planning based on facts and choice of pipe system based on Total Cost of Ownership and CO2 emission

Powered by

Image: Selenergies (Interpreted by the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement no. 846463

Powered by

Image: Selenergies (Interpreted by the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement no. 846463

Image: Selenergies (Interpreted by the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement no. 846463

Image: Selenergies (Interpreted by the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement no. 846463

Image: Selenergies (Interpreted by the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement no. 846463

Image: Selenergies (Interpreted by the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement no. 846463

Image: Selenergies (Interpreted by the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement no. 846463

Image: Selenergies (Interpreted by the European Union's Horizon 2020 Research and Innovation Programme Under Grant Agreement no. 846463

Image: Selenergies (Interpreted by the European Union's Horizon 2020 Research and Innovation Programme Under Grant Agreement no. 846463

Peter Jorsal

Product & Academy Manager

Presenting

Total Cost of Ownership (TCO) tool

A tool that will find the best choice of pipe system based on Total Cost of Ownership

Martin Lindgaard Pedersen

Senior Director - Digitalization

Presenting

Pipe Invest

A ONE-CLICK solution that brings you aggregated overview of utility networks. It shows **current** status, but can also predict **future** refurbishment in utility assets (grids) and allows Utilities to optimize OPEX and CAPEX levels.

Global presence

LOGSTOR Group

- Headquarters in Denmark
- 1,260 employees
- Annual turnover > 240 MEUR

Facts:

- 7 plants and 2 mobile production units
- 13 Sales Units
- Serving more than 40 countries
- More than 5,000 km pre-insulated pipes every year
- More than 300,000 km LOGSTOR pipes supplied to data

T

LOGSTOR Pipe Invest

Disclaimer!

The Pipe Invest tool is currently under development. We are looking for utilities, who are willing to test the system. Expected launch late 2021.

Economy

LOGSTOR

Valves

Pipe Invest

models

 \bigcirc

Detect

LOGSTOR

Calculators

Welding

& Tools

Asset management and network optimization tool

A ONE-CLICK solution that brings you aggregated overview of utility networks. It shows **current** status, but can also predict **future** refurbishment in utility assets (grids) and allows Utilities to optimize OPEX and CAPEX levels. Utilities can reach new levels of confidence in surveillance and investments based on specific network predictions.

> Pipe Invest can tell Utilities where, when and how much to invest LOGSTOR Pipe I | Pipe Inve Data (API) Financing Import/export Kingspan GIS/GEO Installation/Delivery Physical Condition Traceability/Ler2 ₽⊲€ В Sensors & Meters

LOGSTOR Pipe Invest

Different users with different roles and needs

How it works:

- The DH network is imported (via Shape files) in the software.
- The Shape files contains information on the District Heating pipes.
- In the "Network" view, the utility "adjusts" individual parameters on sliders:
- Quality of Pipes
- Energy Loss
- Joints
- Physical condition

After this an economic view is calculated, using algorithms from the TCO tool (presented later by Peter)

LOGSTOR Pipe Invest

Economy View:

The Economy Overview will provide information to your reinvestment planning. With a given maintenance budget, the bar chart with the budget curve (blue) will provide a overview of the financial effects and the map will show the location of the pipes in question.

LOGST

TCO tool

The right choice of pipe system

The challenge – complexity in amount of possibilities

LOGST

• Available pipe systems

- All these variants can be delivered with or without a diffusion barrier
 - The diffusion barrier secures that heat loss properties will remain the same during life time

• \rightarrow 12 different choices for the same

project

Markets for pair of pipe

LOGST

Series 1 single pipe is 60% of the total market of pair of pipe

Series 1 dingle pipe is the pipe system with the worst insulation properties

We see many energy companies that make their choice of pipe system based on

"We do what we do because this is what we always have done"

Total Cost of Ownership includes

LOGST

- Investment (CAPEX)
 - Pre-insulated pipes
 - Excavation and asphalt
 - Pipe handling, welding and jointing
 - Consulting, design
 - Supervision

- Operation (OPEX)
- Heat loss cost
- Pumping cost
- Repairs
- Maintenance
- Surveillance

Heat loss - 1000 m DN 80 - average 30 years

TCO tool, 12 different pipe scenarios for the same project

LOGST

TCO tool, Input of data

LOGST

≡

120	DN32/ø42,4	~	Û
276	DN40/ø48,3	~	Û
96	DN50/ø60,3	~	Û
+ Add			

\star Add to favourites

+ Add

Calculate TCO

TCO tool, Calculation of TCO

LOGST

Results of calculation

Dimensions DN20-DN200

TwinPipe Conti, s.2 with diffusionbarrier λ = 0,023 W/mK **

DN20-DN200 note regarding lambda values: * Pair of pipes, Conti in DN200 series 2 and series 3 have lambda value at 0,025 W/mK ** Twin pipes, DN100 series 2/3 and DN125-DN200 series1/2/3 have lambda value 0,027 W/mK

Calibrate the system in relation to share of the different parts of the investment cost

Make sensitivity analysis on price of energy and period for the calculation

Use the sliders

Calibrate the share of investment costs

LOGST

Results of calculation

Dimensions DN20-DN200

DN20-DN200 note regarding lambda values: * Pair of pipes, Conti in DN200 series 2 and series 3 have lambda value at 0,025 W/mK ** Twin pipes, DN100 series 2/3 and DN125-DN200 series1/2/3 have lambda value 0,027 W/mK

TCO tool, Sensitivity analysis energy cost and period

Results of calculation

Dimensions DN20-DN200

DN20-DN200 note regarding lambda values: * Pair of pipes, Conti in DN200 series 2 and series 3 have lambda value at 0,025 W/mK ** Twin pipes, DN100 series 2/3 and DN125-DN200 series1/2/3 have lambda value 0,027 W/mK

🔲 Pipe material 🔲 Trench excavation 🥮 Pipe installation 📒 Energy loss 🔲 CO2 Quote fee

TCO tool, Calculation of CO₂ emission

- CO2 emission

Values are summarized across all years and compared to the pipe solution with the highest CO2 emission

Dimensions DN20-DN200

2

TCO tool, Calculation of ROI

- ROI

Dimensions DN20-DN200

LOGST

The TCO tool is being tested in this period

Launch October 2021

Questions