TECHNISCHE th|nk
UNIVERSITAT ENERGY RESEARCH
WIEN

How cost efficient Is energy efficiency In
buildings?

A comparison of building shell efficiency & heating
system change in the European building stock

Marcus Hummel, e-think energy research

((‘ 7t International Conference on Smart Energy Systems
21-22 September 2021 o CLUSTER
#SESAAU2021 energyDENMARK
AALBORG UNIVERSITY
DENMARK
Powered by
/nnovation Fund Denmark sEEnergies og@ %:g INNARGI cnu(:vr:\.r-'os HOFOR I(umstrup
Y ~Dunfos LOGSTOR

Funded by the European Union’s Horizon
| NVEST 2020 Research and Innovation Programme - VEstﬂ's/

under Grant Agreement no. 846463




M%ﬁh How cost efficient is energy efficiency in buildings? @!:NQYIRQA!C(H

Contents

» Aim of the work
» Methodology and settings
» Results

» Conclusions and discussion

Funded by the Horizon 2020
Programme of the European Union
under Grant Agreement no. 839509




M %ﬁ;}iém Aim of the work !:NQVIRQA!C(H

Aim of the work

» Background
* Remarkable potentials for heat savings exist in the EU building stocks
« The EU heating system has to become carbon neutral

« General principle: first, save energy, second, supply remaining energy with carbon
neutral options (energy efficiency first principle)

» Research guestions

« “How cost efficient is it to follow the energy efficiency first principle in the EU
building stock?”

« “How cost efficient is energy efficiency in buildings?”

» Aim is to analyse ...
... the effect of different restrictions for refurbishment activities ...
* ... on the resulting cost optimal combinations ...
... of heating system change and thermal renovation ...
« ... with an established EU wide building stock model
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The Invert/Opt model
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Important assumptions

» CO, emissions
* 95% reduction from 2017 until 2050 over the entire stock (in each country)

» Energy carriers potentials

» Country-specific theoretical potential of heated gross floor area that can be
supplied by an energy carrier (saturation limit)

« Diffusion restrictions in the scenario time frame

« Country-specific resource restrictions for decentral biomass utilisation (EU-27
total 91% of current use)

» Energy carrier prices
« For most energy carriers calculated with the Enertile model:
= methane, hydrogen, bio-liquids, e-liquids, electricity, district heat
=  Assumption of nearly full decarbonisation of electricity and district heat
* Only minor amounts of fossil gas/oil remain in the mix
* Biomass prices stay constant


https://www.enertile.eu/
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Refurbishment and scenarios
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» Refurbishment in Invert

* Refurbishment = Maintenance* + thermal renovation
*no effect on effective energy needs
» Refurbishment cycles
... are endogenously determined in the model
... for each building component in each building

... based on distributions of construction / past renovation moments
... and Weibull distributions of lifetime of the components

» Calculated scenarios only differ in the settings on
refurbishment activities:

. Length of
. Share of maintenance on total )
Scenario name . . refurbishment
refurbishment activities L
cycles of building

long short in the entire stock | in single buildings shell
Direct RES-H dir_resh_95 20 - 50% 10 - 90% 1
Low efficiency low_eff 65 - 90% 25-100% 1
Low restrictions low_restric 10 - 90% 0-100% 1
Increased renovation inc_renov 10 - 90% 0-100% r 1/1.4
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Total system costs (1000 Bn. €)
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H Running costs individual heating systems
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Final energy demand — EU27
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Final energy demand (1000 TWh)
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Share of renovation activity:
thermal renovation / (thermal renovation + maintenance)
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Conclusions and discussion

» In order to reach a 95% reduction in CO, emissions in heat
supply in the building stocks ...

« ... remarkable energy savings are cost efficient in the different
analysed scenarios and analysed settings (29 — 47% in terms of final

energy)
* ... in many buildings a thermal renovation is cost efficient compared
to a maintenance activity (82 — >90% depending on country)

... decreasing the length of refurbishment cycles leads to higher shares of
thermal renovation in many countries, not in all; can be interpreted as high
economic renovation potential

» Discussion and open guestions

» Sensitivity on energy carrier potentials and prices seems low, but to be
checked

« Differences between countries and between cheapest options in
different building archetypes to be further analysed

10
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Thanks for the interest!

Any questions?

mel@e-think.ac.at '
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Change In selected u-values — EU27
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Change Iin energy demand per HFA — EU27
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Saturation restrictions for energy carriers

Maximum share of heated floor area, in which different space heating technologies can be applied until 2050:
saturation constraints of energy carriers and heating system technologies
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AT 45%  67% | 100% 100% | 48%  48% | 78%  100% | 54%  56% | 46%
BE 50% 71% | 100% 9% | 9%  10% | 22%  100% | 37%  49% | 22%

BG 50%  32% 100%  25% 25% 10% | 25% 100% 46%  56% | 32%
CcY 80% 1% 100% 9% 9% 10% | 22% 100% 40% 55% 3%

cz 50%  55% 100%  16% 16% 15% | 30% 100% 46%  50% | 35%
DE 50%  76% 100%  100% | 10% 10% 17% 100% 77% 54% 25%
DK 50%  38% 100%  15% 15% 12% | 28% 100% 46%  54% | 57%

EE 50% 36% 100%  24% 24% 15% 35% 100% 44% 52% 47%
ES 75% 54% 100%  13% 13% 10% 25% 100% 39%  46% 23%
Fl 40% 17% 100%  16% 16% 11% 28% 100% 50% 59% 52%
FR 50% 65% 100%  14% 14% 9% 26% 100% 43% 55% 19%

GR 80% 39% 100%  18% 18% 12% 25% 100% 47% 55% 22%
HR 65% 62% 100%  24% 24% 10% 32% 100% 52% 53% 22%
HU 50% 74% 100%  16% 16% 12% 30% 100% 51% 51% 29%

IE 50% 49% 100%  15% 15% 17% 29% 100% 50% 55% 20%
IT 65% 73% 100%  17% 17% 9% 24% 100% 41% 52% 26%
LT 45% 35% 100%  27% 27% 17% 32% 100% 45%  48% 46%
LU 50% 68% 100%  11% 11% 12% 27% 100% 51% 52% 28%
Lv 45% 32% 100%  26% 26% 18% 31% 100% 43% 51% 47%

MT 80% 29% 100% 6% 6% 8% 16% 100% 27% 38% 1%
NL 50% 89% 100% 8% 8% 9% 20% 100% 34%  47% 28%
PL 50% 37% 100%  20% 20% 20% 52% 100% 59% 53% 22%
PT 70% 40% 100%  27% 27% 9% 27% 100% 47% 51% 4%
RO 50% 45% 100%  28% 28% 11% 36% 100% 51% 50% 32%

SE 50% 18% 100%  17% 17% 10% 27% 100% 48% 74% 69%
SK 50% 68% 100%  12% 12% 13% 27% 100% 51% 51% 46%
S| 50% 45% 100%  26% 26% 11% 31% 100% 54% 53% 23%
15 [a) For bi heating sy the model iders an additional total bi p ial restriction all dto

decentral heating systems.
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Diffusion restrictions for energy carriers
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Direct RES-H

Solar thermal <100%
Gas (natural gas, biogas, H2,

e-gas) <50%
QOil (heating oil, bio oil, e-

liquids) <25%
Wood log @ <100%
Wood chips (@ <100%
Pellets (@) <100%
Electricity (pumps and direct

electric heating <50%
District heat <50%
Gas Heatpump <50%
Gas micro-CHP <50%
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Biogas Bi
Share of Decentral biomass resource re
decentral potential on final Ratio of potential pc
biomass on Decentral energy demand for  biomass for use in fo
final energy biomass space heating and resource the space th
Resource restriction for the demand for resour?e domes.tic hot water  potential heating he
. . . Decentral space heating potential (= assuming a 2050 on and hot ar
decentral biomass utilization biomass and domestic full resource  decreasing in biomass water w
utilization hot water potential) related final energy  utilization in  sector se
[TWh] preparation [TWh] demand of 50% base year [TWh] [T
Base year 2050
AT 20.8 25% 13.8 33% 66% 16
BE 7.1 6% 12.3 21% 172% 1.1
BG 8.8 38% 3.8 33% 43% 1.1
cY 0.2 5% 0.5 20% 216% 0.0
Ccz 21.0 22% 16.1 33% 77% 1.6
DE 85.8 12% 97.1 27% 113% 11.0
DK 10.8 18% 9.9 33% 91% 1.0
EE 4.5 35% 2.1 33% 47% 0.5
ES 30.7 19% 26.5 33% 86% 6.0
Fl 135 18% 12.5 33% 92% 1.5
FR 81.6 15% 82.6 30% 101% 13.8
GR 9.5 18% 8.7 33% 91% 1.5
HR 12.5 45% 4.6 33% 37% 1.3
HU 20.0 24% 139 33% 70% 2.7
IE 0.5 2% 2.7 17% 503% 0.8
IT 76.8 19% 67.2 33% 87% 7.4
LT 5.6 33% 29 33% 51% 0.8
LU 0.3 3% 0.8 18% 302% 0.0
Lv 6.0 39% 2.6 33% 43% 0.7
MT 0.0 2% 0.1 17% 519% 0.0
NL 5.2 3% 14.7 18% 282% 1.9
PL 31.7 13% 34.7 28% 109% 4.6
PT 8.8 29% 5.0 33% 57% 0.9
RO 34.2 42% 13.6 33% 40% 3.9
SE 114 11% 13.6 26% 120% 1.7
SI 5.2 39% 2.2 33% 42% 0.3
SK 0.5 1% 3.3 16% 610% 1.1
EU-
17 27 513 16% 468 29% 91% 69
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Key assumptions on energy carrier prices
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Energy Carrier

Assumptions on prices and CO, factor

Gas

Composition: 2% natural gas, 10% methane, 10% hydrogen, rest biogas

EU average of national wholesale prices for biogas around 70 EUR/MWh (Nuffel et al., 2020: Impact of
the use of the biomethane and hydrogen potential on trans-European infrastructure), for methane
around 93 EUR/MWh (from modelling with Enertile) and for hyrogen around 55 EUR/MWh (also from
Enertile)

Grid charge is increasing with decreasing gas consumption

Fuel oil

Composition: 5% fossil heating oil, 85% bio liquids, 10% e-liquids
EU average of national wholesale prices for bio liquids around 87 EUR/MWh (+25% compared to
biogas) and for e-liquids around 103 EUR/MWh (+10% compared to e-gases)

Biomass

Are assumed to remain constant

Electricity

Nearly full decarbonisation of supply infrastructure
Modelling of wholesale prices at national level with the Enertile model
EU average of national wholesale prices around 55 EUR/MWh in 2050

District heating

Nearly full decarbonisation of supply infrastructure

Modelling of future wholesale prices at national level with the Enertile model

Current wholesale prices according to literature

Difference between current and future wholesale prices based on difference in modelled supply costs
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