

How cost efficient is energy efficiency in buildings?

A comparison of building shell efficiency & heating system change in the European building stock

Marcus Hummel, e-think energy research

Contents

- Aim of the work
- Methodology and settings
- Results
- Conclusions and discussion

Aim of the work

Background

- Remarkable potentials for heat savings exist in the EU building stocks
- The EU heating system has to become carbon neutral
- General principle: first, save energy, second, supply remaining energy with carbon neutral options (energy efficiency first principle)

Research questions

- "How cost efficient is it to follow the energy efficiency first principle in the EU building stock?"
- "How cost efficient is energy efficiency in buildings?"
- Aim is to analyse ...
 - ... the effect of different restrictions for refurbishment activities ...
 - ... on the resulting cost optimal combinations ...
 - ... of heating system change and thermal renovation ...
 - ... with an established EU wide building stock model

The Invert/Opt model

Important assumptions

CO₂ emissions

• 95% reduction from 2017 until 2050 over the entire stock (in each country)

Energy carriers potentials

- Country-specific theoretical potential of heated gross floor area that can be supplied by an energy carrier (saturation limit)
- Diffusion restrictions in the scenario time frame
- Country-specific resource restrictions for decentral biomass utilisation (EU-27 total 91% of current use)

Energy carrier prices

- For most energy carriers calculated with the Enertile model:
 - methane, hydrogen, bio-liquids, e-liquids, electricity, district heat
 - Assumption of nearly full decarbonisation of electricity and district heat
- Only minor amounts of fossil gas/oil remain in the mix
- Biomass prices stay constant

Refurbishment and scenarios

Refurbishment in Invert

Refurbishment = Maintenance* + thermal renovation

*no effect on effective energy needs

- Refurbishment cycles
 - ... are endogenously determined in the model
 - ... for each building component in each building
 - ... based on distributions of construction / past renovation moments
 - ... and Weibull distributions of lifetime of the components

Calculated scenarios only differ in the settings on refurbishment activities:

Scenario name		Share of mainte refurbishme	Length of refurbishment cycles of building		
long	short	in the entire stock	in single buildings	shell	
Direct RES-H	dir_resh_95	20 - 50%	10 - 90%	1	
Low efficiency	low_eff	65 - 90%	25 - 100%	1	
Low restrictions	low_restric	10 - 90%	0 - 100%	1	
Increased renovation	inc_renov	10 - 90%	0 - 100%	1/1.4	

Total system costs – EU27

Final energy demand – EU27

Exploitation of renovation potential

Conclusions and discussion

- In order to reach a 95% reduction in CO₂ emissions in heat supply in the building stocks …
 - ... remarkable energy savings are cost efficient in the different analysed scenarios and analysed settings (29 – 47% in terms of final energy)
 - ... in many buildings a thermal renovation is cost efficient compared to a maintenance activity (82 >90% depending on country)
 - ... decreasing the length of refurbishment cycles leads to higher shares of thermal renovation in many countries, not in all; can be interpreted as high economic renovation potential
- Discussion and open questions
 - Sensitivity on energy carrier potentials and prices seems low, but to be checked
 - Differences between countries and between cheapest options in different building archetypes to be further analysed

Thanks for the interest!

Any questions?

Renovation vs. maintenance – Austria

Change in selected u-values – EU27

Results

Change in energy demand per HFA – EU27

Results

Saturation restrictions for energy carriers

Maximum share of heated floor area, in which different space heating technologies can be applied until 2050: saturation constraints of energy carriers and heating system technologies

	Solar thermal/ PV	Natural Gas	ĪŌ	Coal	Wood log ^(a)	Wood chips ^(a)	Pellets ^(a)	Direct electricity for heating	Heatpump Ground source	Heatpump Air source	District heat
AT	45%	67%	100%	100%	48%	48%	78%	100%	54%	56%	46%
BE	50%	71%	100%	9%	9%	10%	22%	100%	37%	49%	22%
BG	50%	32%	100%	25%	25%	10%	25%	100%	46%	56%	32%
CY	80%	1%	100%	9%	9%	10%	22%	100%	40%	55%	3%
CZ	50%	55%	100%	16%	16%	15%	30%	100%	46%	50%	35%
DE	50%	76%	100%	100%	10%	10%	17%	100%	77%	54%	25%
DK	50%	38%	100%	15%	15%	12%	28%	100%	46%	54%	57%
EE	50%	36%	100%	24%	24%	15%	35%	100%	44%	52%	47%
ES	75%	54%	100%	13%	13%	10%	25%	100%	39%	46%	23%
FI	40%	17%	100%	16%	16%	11%	28%	100%	50%	59%	52%
FR	50%	65%	100%	14%	14%	9%	26%	100%	43%	55%	19%
GR	80%	39%	100%	18%	18%	12%	25%	100%	47%	55%	22%
HR	65%	62%	100%	24%	24%	10%	32%	100%	52%	53%	22%
HU	50%	74%	100%	16%	16%	12%	30%	100%	51%	51%	29%
IE	50%	49%	100%	15%	15%	17%	29%	100%	50%	55%	20%
IT	65%	73%	100%	17%	17%	9%	24%	100%	41%	52%	26%
LT	45%	35%	100%	27%	27%	17%	32%	100%	45%	48%	46%
LU	50%	68%	100%	11%	11%	12%	27%	100%	51%	52%	28%
LV	45%	32%	100%	26%	26%	18%	31%	100%	43%	51%	47%
MT	80%	29%	100%	6%	6%	8%	16%	100%	27%	38%	1%
NL	50%	89%	100%	8%	8%	9%	20%	100%	34%	47%	28%
PL	50%	37%	100%	20%	20%	20%	52%	100%	59%	53%	22%
PT	70%	40%	100%	27%	27%	9%	27%	100%	47%	51%	4%
RO	50%	45%	100%	28%	28%	11%	36%	100%	51%	50%	32%
SE	50%	18%	100%	17%	17%	10%	27%	100%	48%	74%	69%
SK	50%	68%	100%	12%	12%	13%	27%	100%	51%	51%	46%
SI	50%	45%	100%	26%	26%	11%	31%	100%	54%	53%	23%

(a) For biomass heating systems, the model considers an additional total biomass potential restriction allocated to decentral heating systems.

Diffusion restrictions for energy carriers

	Direct RES-H
Solar thermal	≤100%
Gas (natural gas, biogas, H2,	
e-gas)	≤50%
Oil (heating oil, bio oil, e-	
liquids)	≤25%
Wood log ^(a)	≤100%
Wood chips ^(a)	≤100%
Pellets ^(a)	≤100%
Electricity (pumps and direct	
electric heating	≤50%
District heat	<50%
Gas Heatpump	≤50%
Gas micro-CHP	≤50%

Decentral biomass resource restrictions

Resource restriction for the decentral biomass utilization

						Biogas	Bi
		Share of		Decentral biomass		resource	re
		decentral		potential on final	Ratio of	potential	pc
		biomass on	Decentral	energy demand for	biomass	for use in	fo
		final energy	biomass	space heating and	resource	the space	th
		demand for	resource	domestic hot water	potential	heating	he
	Decentral	space heating	potential (=	assuming a	2050 on	and hot	ar
	biomass	and domestic	full resource	decreasing in	biomass	water	W
	utilization	hot water	potential)	related final energy	utilization in	sector	se
	[TWh]	preparation	[TWh]	demand of 50%	base year	[TWh]	[Τ
	В	ase year			2050		
AT	20.8	25%	13.8	33%	66%	1.6	
BE	7.1	6%	12.3	21%	172%	1.1	
BG	8.8	38%	3.8	33%	43%	1.1	
CY	0.2	5%	0.5	20%	216%	0.0	
CZ	21.0	22%	16.1	33%	77%	1.6	
DE	85.8	12%	97.1	27%	113%	11.0	
DK	10.8	18%	9.9	33%	91%	1.0	
EE	4.5	35%	2.1	33%	47%	0.5	
ES	30.7	19%	26.5	33%	86%	6.0	
FI	13.5	18%	12.5	33%	92%	1.5	
FR	81.6	15%	82.6	30%	101%	13.8	
GR	9.5	18%	8.7	33%	91%	1.5	
HR	12.5	45%	4.6	33%	37%	1.3	
HU	20.0	24%	13.9	33%	70%	2.7	
IE	0.5	2%	2.7	17%	503%	0.8	
IT	76.8	19%	67.2	33%	87%	7.4	
LT	5.6	33%	2.9	33%	51%	0.8	
LU	0.3	3%	0.8	18%	302%	0.0	
LV	6.0	39%	2.6	33%	43%	0.7	
MT	0.0	2%	0.1	17%	519%	0.0	
NL	5.2	3%	14.7	18%	282%	1.9	
PL	31.7	13%	34.7	28%	109%	4.6	
PT	8.8	29%	5.0	33%	57%	0.9	
RO	34.2	42%	13.6	33%	40%	3.9	
SE	11.4	11%	13.6	26%	120%	1.7	
SI	5.2	39%	2.2	33%	42%	0.3	
SK	0.5	1%	3.3	16%	610%	1.1	
EU-	-10	4.60/	460	2004		~~	
27	513	16%	468	29%	91%	69	

Key assumptions on energy carrier prices

Energy Carrier	Assumptions on prices and CO ₂ factor
Gas	Composition: 2% natural gas, 10% methane, 10% hydrogen, rest biogas EU average of national wholesale prices for biogas around 70 EUR/MWh (Nuffel et al., 2020: Impact of the use of the biomethane and hydrogen potential on trans-European infrastructure), for methane around 93 EUR/MWh (from modelling with Enertile) and for hyrogen around 55 EUR/MWh (also from Enertile) Grid charge is increasing with decreasing gas consumption
Fuel oil	Composition: 5% fossil heating oil, 85% bio liquids, 10% e-liquids EU average of national wholesale prices for bio liquids around 87 EUR/MWh (+25% compared to biogas) and for e-liquids around 103 EUR/MWh (+10% compared to e-gases)
Biomass	Are assumed to remain constant
Electricity	Nearly full decarbonisation of supply infrastructure Modelling of wholesale prices at national level with the Enertile model EU average of national wholesale prices around 55 EUR/MWh in 2050
District heating	Nearly full decarbonisation of supply infrastructure Modelling of future wholesale prices at national level with the Enertile model Current wholesale prices according to literature Difference between current and future wholesale prices based on difference in modelled supply costs

Renovation vs. maintenance – Austria

Final energy demand – EU27

