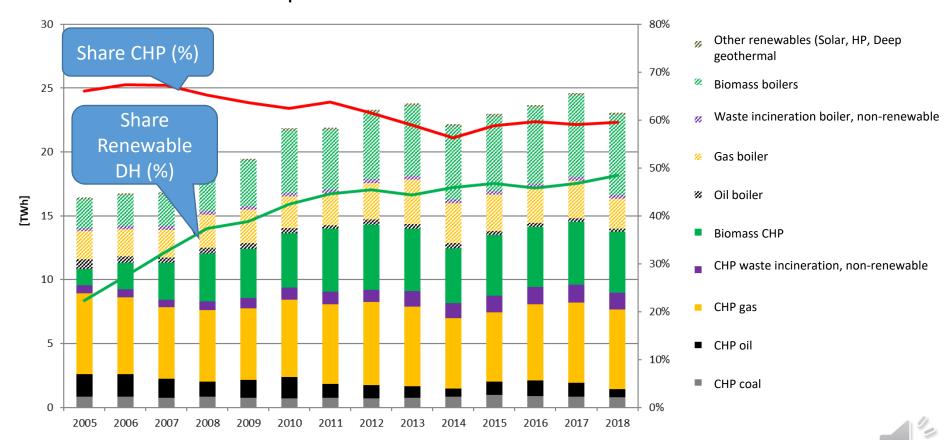


# The economic potential of district heating under climate neutrality: the case of Austria

Lukas Kranzl, Mostafa Fallahnejad, Jeton Hasani, TU Wien, Energy Economics Group


Marcus Hummel, David Schmidinger, e-think energy research

SES Conference, 21.09.2021



#### District Heat Generation, Austria

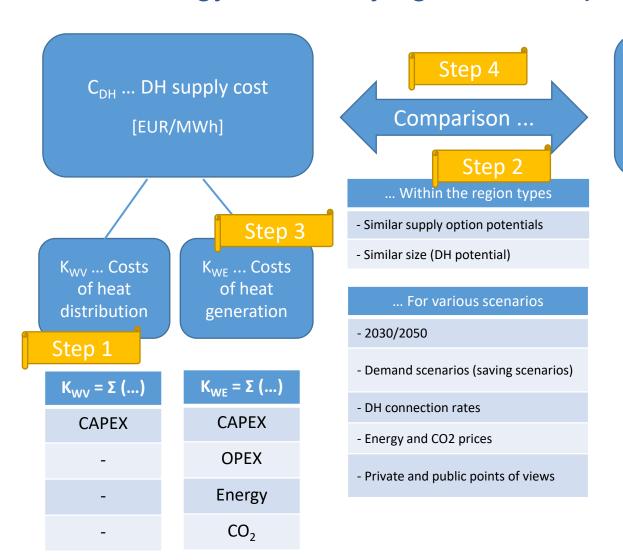
- Share of district heating in Austria, 2019: 20% of final energy consumption for space and water heating
- Future evolution and potential?





#### Motivation and research question

- Energy Efficiency Directive Art 14: Promotion of efficiency in the supply of heating and cooling
- "Comprehensive assessment of the potential for an efficient heating and cooling supply" is to be carried out by Member States every 5 years (starting in 2015)
- Project on behalf of the Austrian Federal Ministry of Climate Action to fulfill the reporting obligation of Art. 14 & Annex VIII of the EED
- Research questions for this presentation:
  - What is the economic potential of renewable district heating under different scenarios for the case of Austria?
    - Which types of areas can/should be supplied by district heating?
    - What is an economically viable district heating supply mix in different types of district heating systems and in Austria in general?
    - What are drivers for the uptake of future district heating potentials?
  - How do decarbonisation targets affect the way how cost-benefit analyses foreseen in the comprehensive assessment should be applied?




#### Scope and system boundaries

- Focus on space heating and hot water preparation (industrial process heating only for consideration of industrial waste heat supply)
- "Efficient district heating": according to the EED currently under revision => considered under the light of achieving climate targets
- According to the current Austrian government programme, we assumed climate neutrality to be achieved in 2040.



#### Methodology for identifying economic potential of DH



C<sub>DE</sub> ... Cost of decentralized supply option

[EUR/MWh]

Step 3

 $K_{OE} = \Sigma (...)$ 

**OPEX** 

Energy

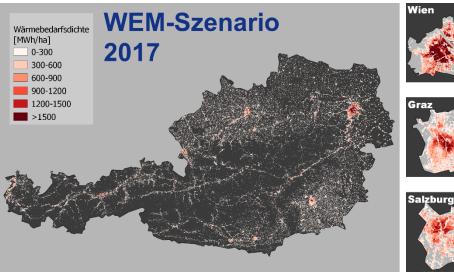
 $CO_2$ 



#### Step 1:

Identification of regions that could potentially be suitable for district heating


(based on heat distribution costs)




#### Step 1: Identification of regions that could potentially be suitable for district heating

#### Scenarios & characteristics of the portfolios

(with different characteristics in different types of regions and depending on the need to meet the needs)









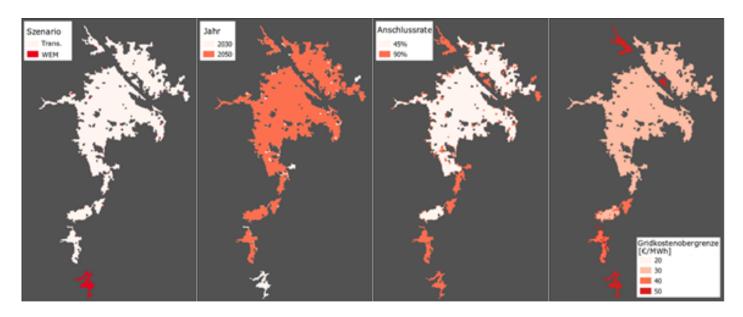
- WEM With existing measures (includes already implemented measures, May 2016)
- Transition Scenario a 80% reduction of CO2-Emissions till 2050 compared to 1990 Further assumptions for full decarbonisation of the gas supply to meet the objective of climate neutrality



Step 1: Identification of regions that could potentially be suitable for district heating

### Resulting regions

Scenario: **WEM** / transition


Year: **2030** / 2050

Connection rate: 45% / 90%

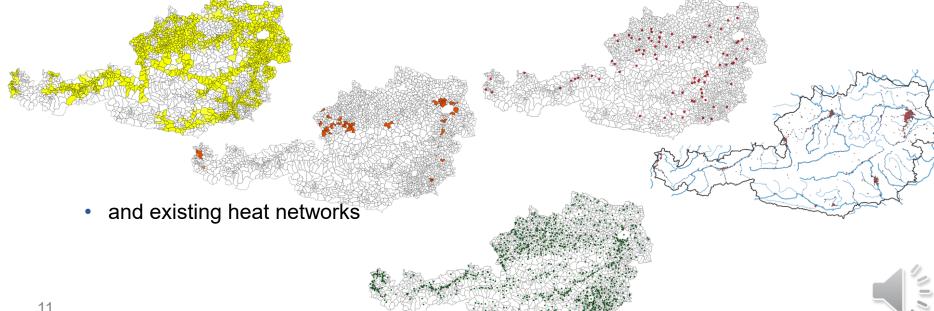
max. heat distribution costs: 30/40/**50**€/MWh

Identified regions in the maximum scenario:

Impact of different scenarios on the size of district heating areas:






#### Step 2:

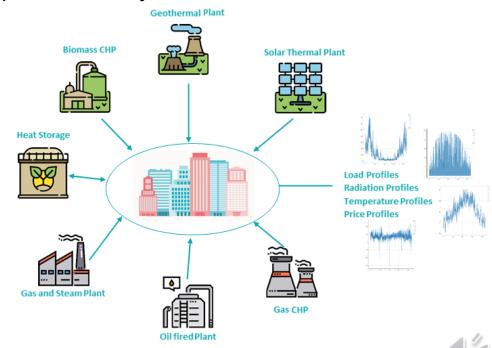
Clustering of regions with similar characteristics (size, resource availability and existing infrastructure).



Clustering of potential district heating regions

- Individual consideration of the 4 major DH regions.
  - Types 1-4: Vienna, Graz, Linz, Salzburg
- Clustering of all other regions into 6 remaining district heating region types.
  - according to heat supply potentials (gas availability, geothermal potential, waste heat potential, river size)




#### Step 3:

Calculation of costs for heat supply (District heat supply and object-related supply)



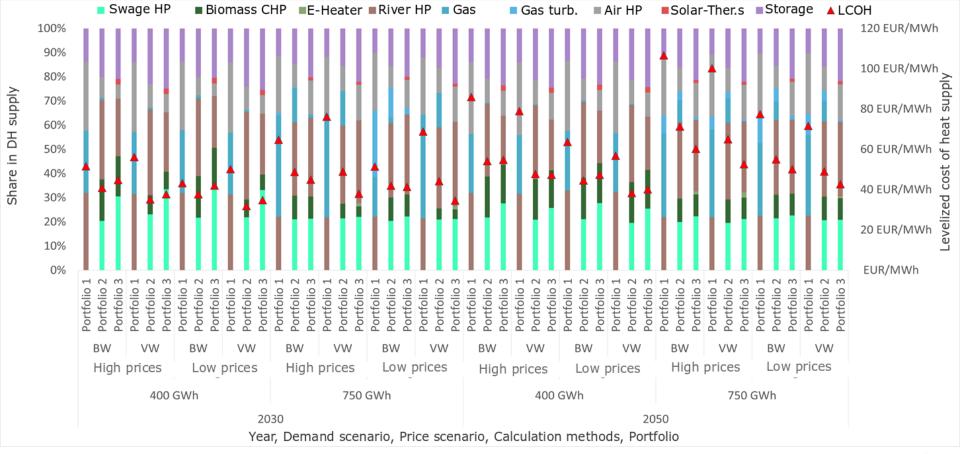
#### Methodology district heating supply

- Use of the Hotmaps DH dispatch stand-alone model 1
- Minimization of running costs of heat supply to the district heating network
- Calculation for all 8760 hours of a representative year
- COP of heat pumps depending on relevant temperatures
   (flow, return, heat sources)
- Predefined technology park
- Calculation of numerous variants per region type



#### Step 3: Berechnung der Kosten für die Wärmebereitstellung – Fernwärmeeinspeisung

## Scenarios for district heating supply


| Scenario Type                 | No. | Description                                                                                                                                                                                                                   |
|-------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Region types                  | 10  | 4 specific regions (Vienna, Graz, Linz, Salzburg) 6 typical regions (demand / supply potential) For each type of region::  • Temperatures (air, system, heat sources)  • Irradiation  • Load profile  • Resource availability |
| Year                          | 2   | 2030 / 2050                                                                                                                                                                                                                   |
| Assessment method             | 2   | Financial (BW) / economic(VW)                                                                                                                                                                                                 |
| Heat demand                   | 2   | Two demand levels                                                                                                                                                                                                             |
| Energy carrier and CO2 prices | 2   | Low vs. high prices                                                                                                                                                                                                           |
| Technology Portfolios         | 3   | <ul> <li>A. predominantly gas</li> <li>B. Gas with renewables and excess heat</li> <li>C. Predominantly renewables and excess heat, almost no gas</li> </ul>                                                                  |
| Total                         | 480 |                                                                                                                                                                                                                               |



#### Results

#### Exemplary result of DH supply:

Cluster 7 (Regions with existing DH grids, gas infrastructure and high potential for river water source heat pump)





#### Step 4:

Identification of the economic potential for efficient heat supply.

(Comparison of costs for district heating and object-related supply).



#### Methodology

C<sub>DH</sub> ... Cost of supply from district heating

EUR/MWh]

Comparison ...

... for each district heating potential area

C<sub>DE</sub> ... Cost of decentralized supply

EUR/MWh]

 $C_{DH} < C_{DE}$  $C_{DH} > C_{DE}$ 

... District heating is economical

... District heating is not economical

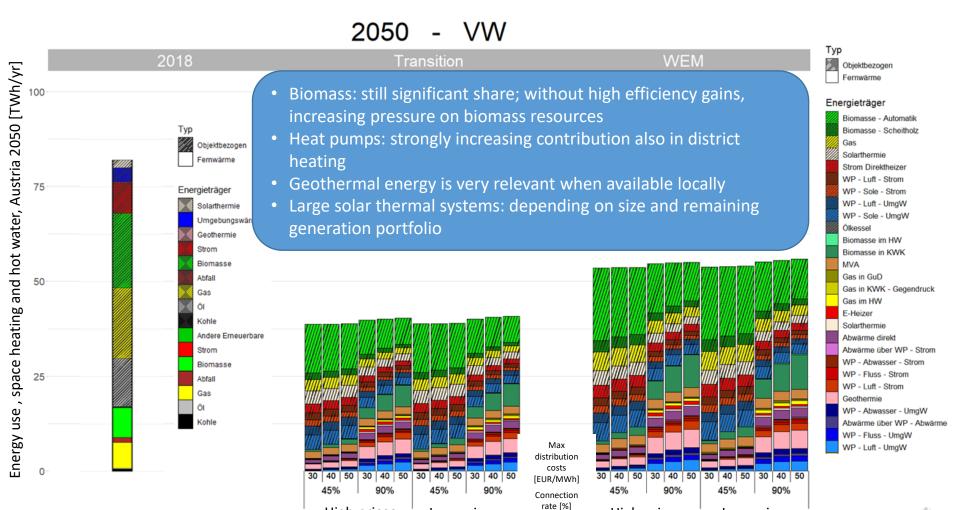
... for each individual scenario and each raster cell (ha level)

Total district heating potential [GWh/yr] in all areas where district heating is economic = Economic potential.

Sum of heat supply from the different technologies [GWh/yr] in all areas where district heating is economical = Economic potential per technology.



#### Results


## Share of economic DH supply from total heat supply

2050, socio economic point of view)





## Result of heat supply 2050, socio economic point of view





Prices

High prices

Low prices

Low prices

High prices

#### Conclusion

- Carrying out the cost-benefit analysis foreseen in the EED under the target of climate neutrality means to exclude all fossil based systems
- ▶ Thus, assuming full decarbonization (gas from 100% green gas), gas is not a cost-effective option in the space heating sector (neither for district heating nor decentral).
- Thermal storage systems are becoming increasingly important (uncertainty regarding costs).
- Achievable connection rates have a major impact on the economic potential of district heating.
- The heat demand scenarios have less of an impact on the district heating potential than the achievable connection rates.



#### Outlook and open questions

- Parameter variation for different scaling of thermal storage in different types of district heating grids and for different generation portfolios
- Analyses for different system temperatures and on district level
- Extension of the approach to an EU-wide set of representative district heating grids (Tender for the EC)
- Granularity and system boundaries in district heating sector modelling?
  - Low level of granularity in full energy system models vs.
  - high level of granularity in our bottom-up consideration without considering feedback loops, e.g. on electricity price
- Comparison of method and results among different countries?








# Thank you for your attention!

lukas.kranzl@tuwien.ac.at

www.austrian-heatmap.gv.at

