

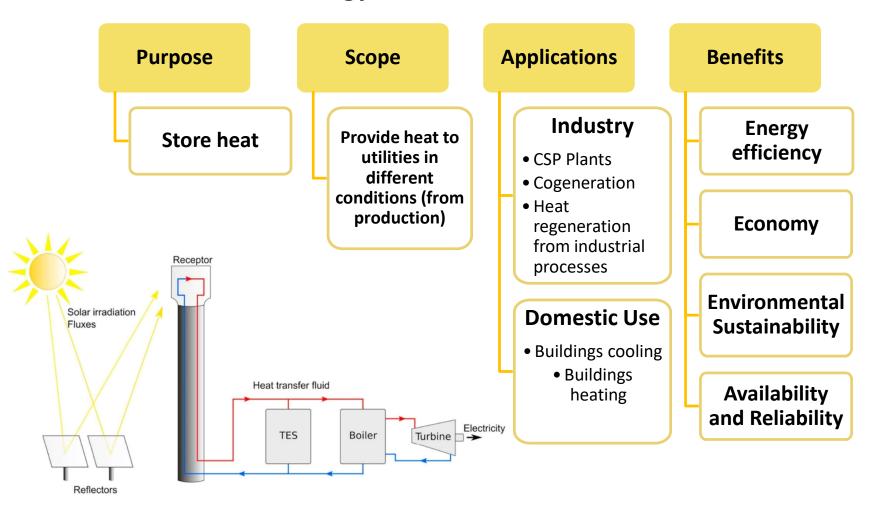
Realization and energy assessment algorythm of a Horizontal Packed Bed **Regenerator for Thermal Energy Storage**

Powered by

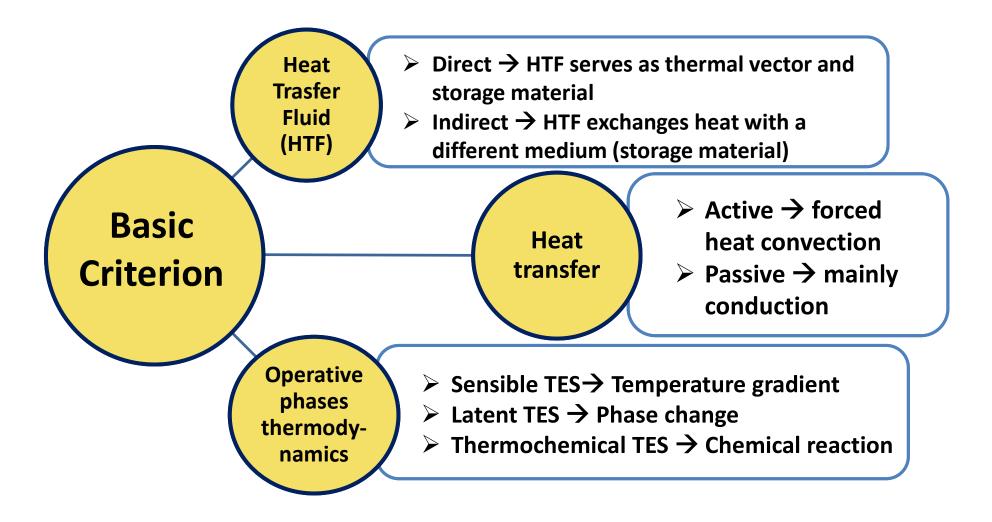
Lorenzo Aurelio Cassetti M.Sc. in Energy Engineering from Politecnico di Milano

Innovation Fund Denmark

Funded by the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement no. 846463

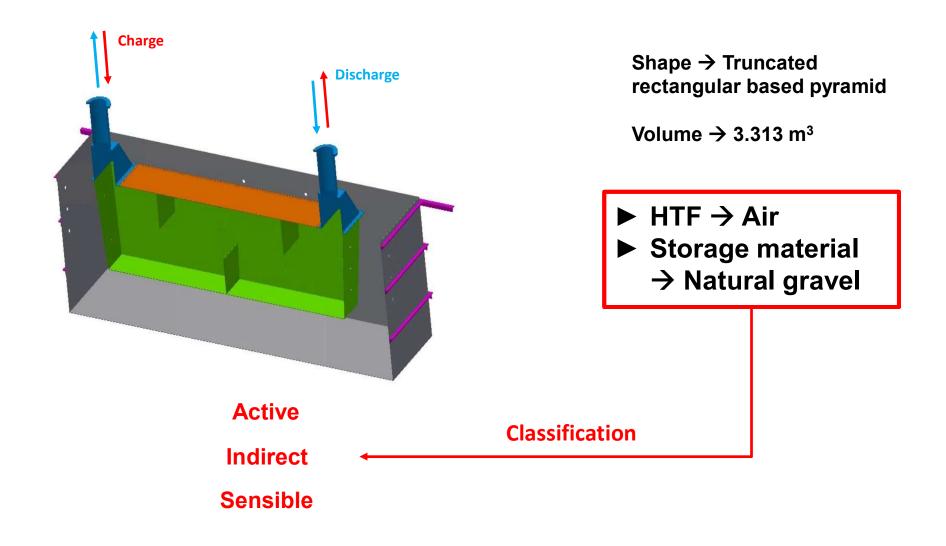


LOGSTOR

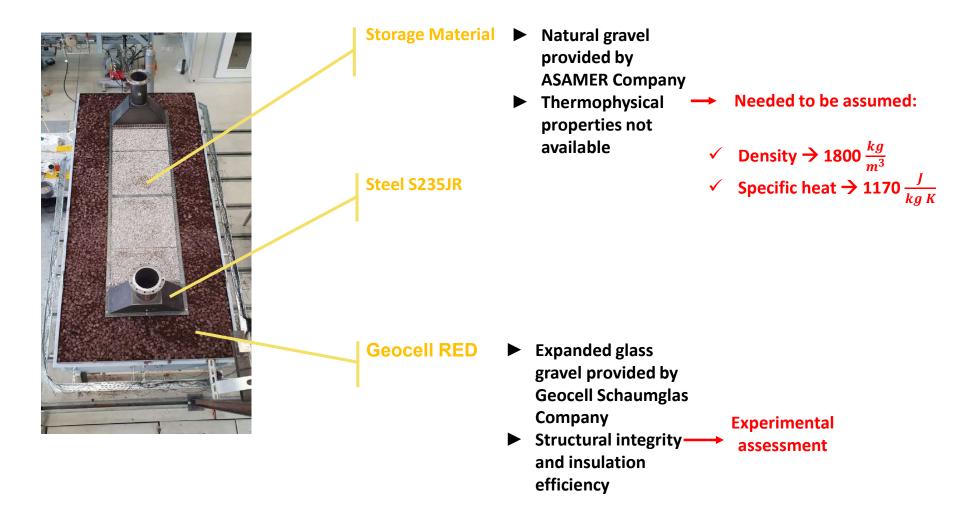

Introduction to TES technology: Overview

Introduction to TES technology: Classification

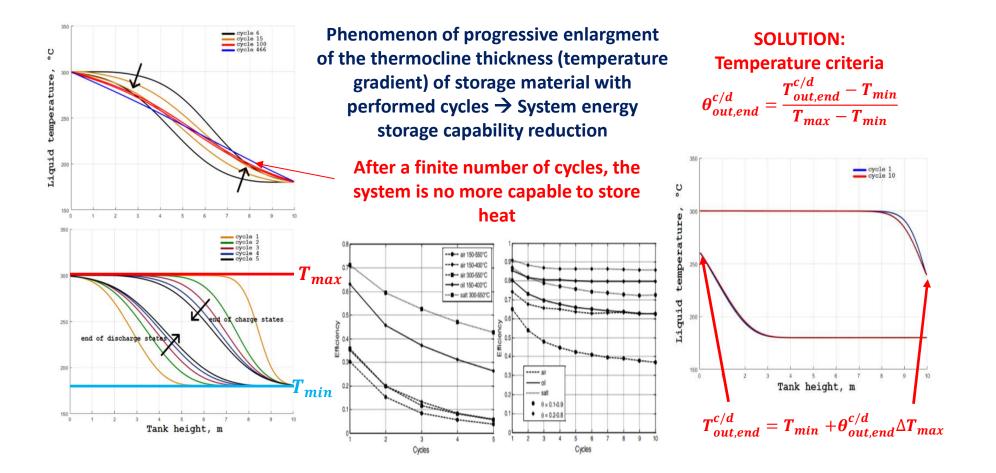
Introduction to TES technology : TES R&D topics for power generation


	Sensible			Latent			Thermochemical		
Attribute	2018	2030	2050	2018	2030	2050	2018	2030	2050
Cost (USD/kWh)	25-30	< 15	< 12	25-90	25-35	< 12	Research level	Pilot scale, 80-160	Demon stration <80
Efficiency (%)	>90	>92	>95	>90	>92	>95	40-50	(1)	
Energy density (kWh/m³)	70-200	(2)		30-85		800-1200			
Lifetime (years or cycles)	< 10 000	> 10 000		3 000- 5 000	4 000- 5 000	5 000- 10 000	< 100	500- 1 000	>1000 3000
Working temperature (°C)	< 565	600- 700	> 700	< 600	600- 750	700- 850	500-900		500- 1000

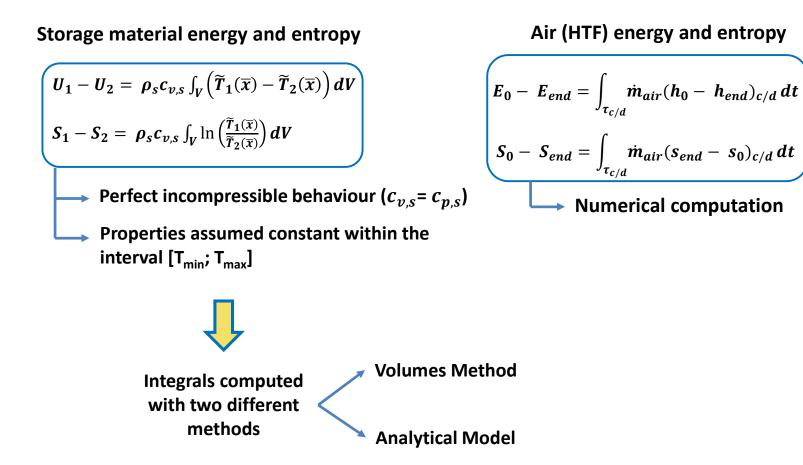
Source: Innovation Outlook – Thermal Energy Storage; IRENA; 2020


TU Wien Test Rig: Description

TU Wien Test Rig: Materials

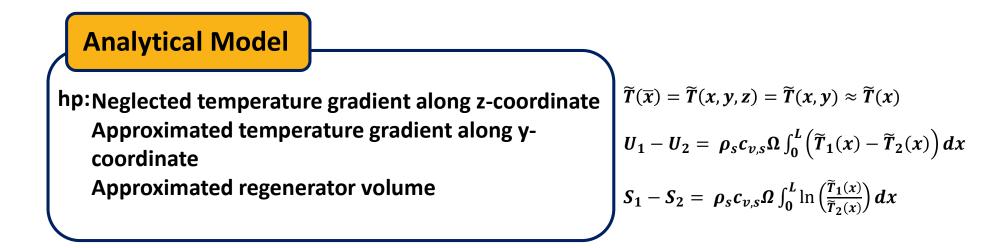

Energy assessment algorythms: Performed analysis

Energy Analysis	Exergy Analysis	Dimensional Analysis		
Evaluation of test rig capability to store heat	 Evaluation of the thermodynamic quality of the processes occurring 	 Evaluation of the relationship between efficiencies and dimensional parameter. 		
Evaluation of thermal hysteresis effects	during operative phases	 Non-dimensional formulation allows to extend the validity of energy and exergy analysis to similar systems 		


Energy assessment algorythms: Thermal hysteresis

Energy assessment algorythms: Energy and Exergy analysis algorythms

Volumes Method

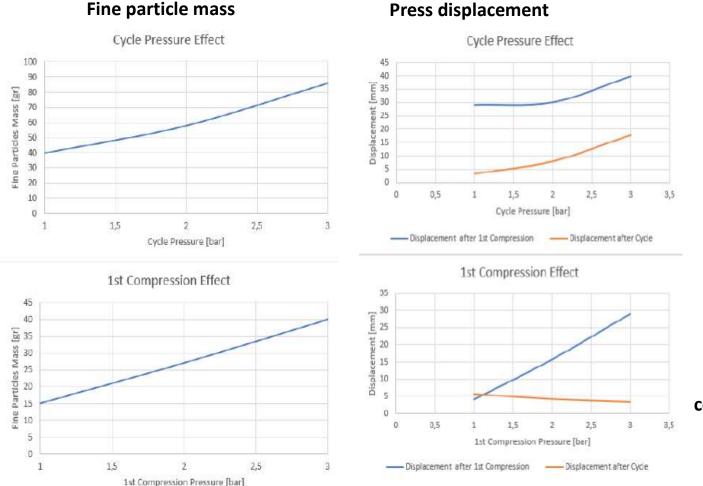


Energy assessment algorythms: Energy and Exergy analysis algorythms

hp:30 volumes (1 for every thermoresistance applied) Approximated regenerator volume Homogeneous temperature within each volume

$$U_1 - U_2 = \rho_s c_{v,s} \sum_{1}^{30} V_i (T_1 - T_2)_i$$

$$S_1 - S_2 = \rho_s c_{\nu,s} \sum_{1}^{30} V_i \ln \left(\frac{T_1}{T_2}\right)_i$$


Energy assessment algorythms: Dimensional analysis

	Quantity	Unit		Q	uantity	П
Operational Parameters		К	Operational Π	T_{C}	'c	$\Pi_{T_C} = \frac{T_C}{T_H}$
	T_C	Κ		T_{f}^{c}	c f,out,end	$\begin{split} \Pi_{T^{e}_{f,out,end}} &= \frac{T^{e}_{f,out,end}}{T_{H}} \\ \Pi_{T^{d}_{f,out,end}} &= \frac{T^{d}_{f,out,end}}{T_{H}} \\ \Pi_{\Delta t_{c}} &= \frac{\dot{m}''_{f}}{L} \frac{\rho_{s}}{\rho_{s}} \cdot \Delta t_{c} \end{split}$
	$T_{f,out,end}^c$	K		T_{f}^{c}	d f,out,end	$\Pi_{T^d_{f,out,end}} = \frac{T^d_{f,out,end}}{T_H}$
	$(\dot{m}_{f,out,end}^{d})$	m K kg/m ² s		Δ	Δt_c	$\Pi_{\Delta t_c} = \frac{\dot{m}_f''}{L \ \rho_s} \cdot \Delta t_c$
	Δt_c	s s		Δ	t_d	$\Pi_{\Delta t_d} = \frac{\dot{m}_f''}{L \ \rho_s} \cdot \Delta t_d$
	Δt_d	s		n		$\Pi_n = n$
	n	2	Geometrical II	d		$\Pi_d = \frac{d}{L}$
Geometrical Parameters		m		Н		$\Pi_H = \frac{H}{L}$
	d	m		W		$\Pi_W = \frac{W}{L}$
	Н	m		ta		$\Pi_{\alpha} = \tan \alpha$
	W tan α	m		ε		$\Pi_{\epsilon} = \epsilon$
	ϵ	-	HTF Thermophy	ysical Π $c_{p,}$		$\Pi_{c_{p,f}} = \frac{T_H \cdot \rho_s^2}{(\dot{m}''_f)^2} \cdot c_{p,f}$
HTF Thermophysical Properties	$c_{p,f}$	J/kg K				$\Pi_{c_{v,f}} = \frac{(\dot{m}''_f)^2}{(\dot{m}''_f)^2} \cdot c_{v,f}$ $\Pi_{c_{v,f}} = \frac{T_H \cdot \rho_s^2}{(\dot{m}''_f)^2} \cdot c_{v,f}$
	$C_{v,f}$	J/kg K		c_{v}		2 C
	ρ_f	$\rm kg/m^3$		$ ho_f$		$\Pi_{\rho_f} = \frac{\rho_f}{\rho_s}$
	k_{f}	W/m K		k_f	f	$\Pi_{k_f} = \frac{T_H \cdot \rho_s^2}{L \cdot (m_f'')^3} \cdot k_f$
	μ_f	Pa s		μ_f	f	$\Pi_{\mu_f} = \frac{1}{L \cdot (\dot{m}''_f)_f} \cdot \mu_f$
Storage material Thermophysical Properties	$c_{\mathrm{p,s}}$	$J/kg \ k$	Storage material	l Thermophysical $\Pi = c_{p_i}$	0,8	$\Pi_{c_{p,s}} = \frac{T_H \cdot \rho_s^2}{(\dot{m}''_f)^2} \cdot c_{p,s}$
	ρ_s	kg/m^3		k_s		$\Pi_{k_s} = \frac{T_H \cdot \rho_s^2}{L \cdot (m_f')_f^3} \cdot k_s$
	k_s	$\rm W/m~K$		1.8		$-\kappa_s = L \cdot (m_f')_f^s$

Commissioning activities: Geocell RED Evaluation results

Press displacement

Temperature effects

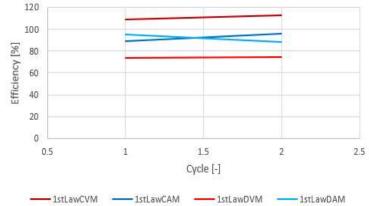
Net increase of fine particle generation (from 2% to 6%) but almost constant press displacement (thermal expansion)


Insulation efficiency decay and structural integrity compromised due to thermal expansion-compression

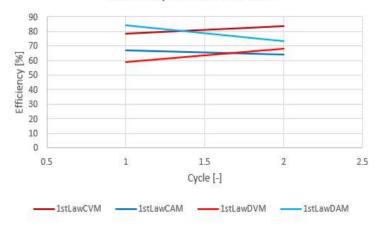
Insulation efficiency and structural integrity issue

Preliminary test: Description

Scope: testig the automathic mode of the control system

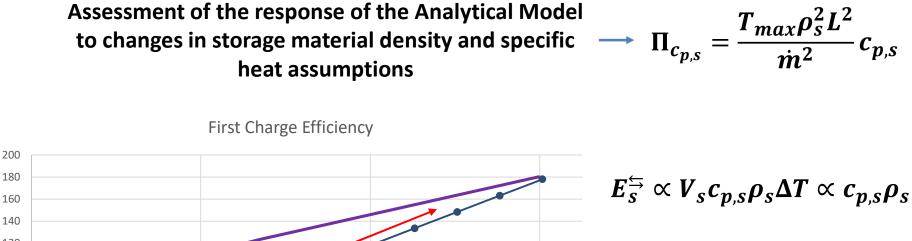


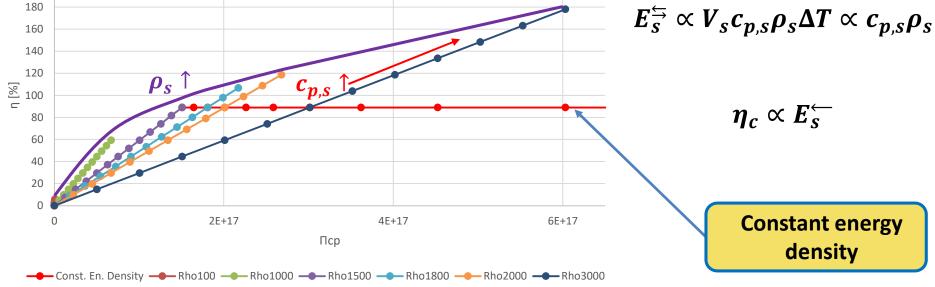
Preliminary test: Energy and Exergy analysis


1st law efficiency	2nd law efficiency		
108.86%	78.76%		
73.49%	58.74%		
112.76%	83.44%		
74.61%	63.38%		
1st law efficiency	2nd law efficiency		
89.02%	67.07%		
94.89%	84.29%		
96.04%	63.94%		
00.04%	73.05%		
	108.86% 73.49% 112.76% 74.61% 1st law efficiency 89.02% 94.89%		

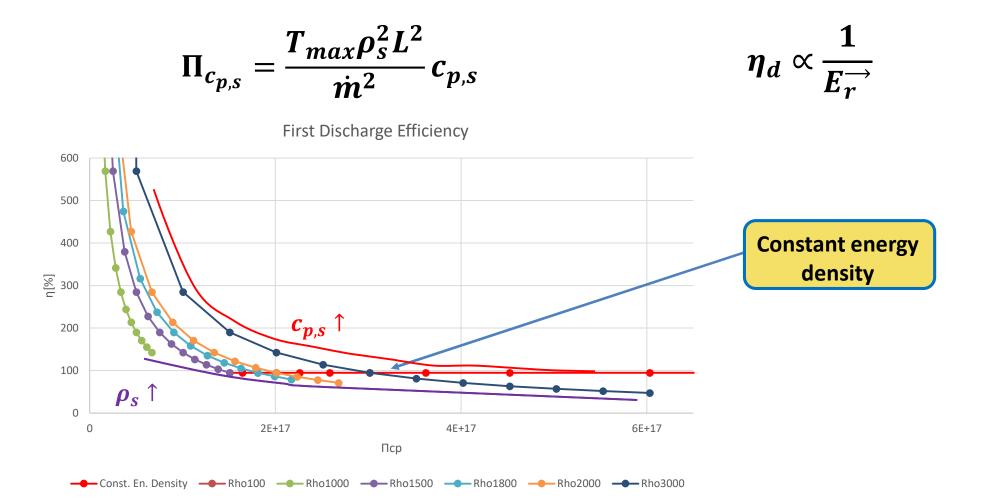
Volumes Method Analytical Model

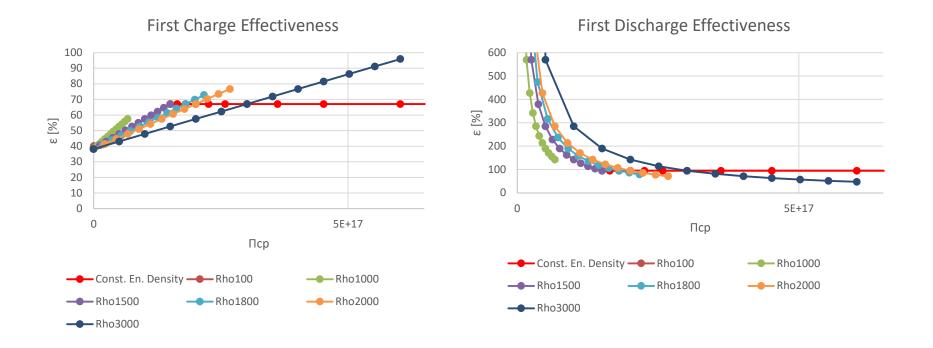
Energy efficiencies


Thermodynamic efficiencies

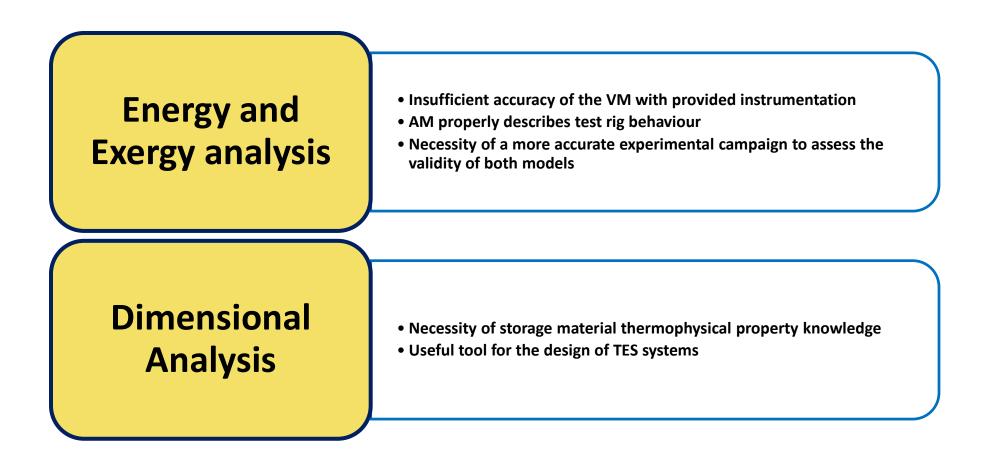


Preliminary test: Dimensional analysis




Preliminary test: Dimensional analysis

Preliminary test: Dimensional analysis



Conclusions

7th International Conference on Smart Energy Systems 21-22 September 2021 #SESAAU2021

Thanks for the attention

