

Powered by

A LIFECYCLE COMPARISON OF PRIMARY ENERGY USE AND CLIMATE IMPACT OF BIOFUEL AND ELECTRIC CARS

Leif Gustavsson and Roger Sathre Sustainable Built Environment Research Linnaeus University, Växjö, Sweden

Linnæus University

Methodology Life cycle comparison

- We compare BEV (Battery Electric Vehicle) and liquid-fuel ICV (Internal Combustion Vehicle) cars that provide equivalent transport service
- Analysis includes:
 - primary energy use of manufacturing the cars and batteries
 - operating primary energy use of the vehicles over their lifespans
 - full fuel cycle fossil and biogenic CO₂ emissions and resulting Cumulative Radiative Forcing (CRF)
- Main analysis: medium sized passenger car going 15,000 km annually during 15-year lifespan, mid range batteries, slash (branches and tops) forest residues including international transport, emerging technologies
- Sensitivity analysis: car size, car driving distance, car lifespan, battery type, biomass source and transport distance, conventional technologies

Methodology CO₂ emissions accounting

- We consider all fossil CO₂ emissions from technological systems
- We consider all biogenic CO₂ emissions from technological systems
- We consider biogenic CO₂ emissions from slow natural decay of forest residues if left on the forest floor instead of being used for energy (current default)
- To understand the climate impact of complex patterns of CO₂ emissions and removals, we calculate cumulative radiative forcing (CRF)

Methodology Car operating energy pathways

- BEVs get electricity from:
 - stand-alone electricity plants using forest residues
 - stand-alone electricity plants with a mix of 70% wind and 30% forest residues

• ICVs are powered by:

- gasoline from conventional fossil oil refineries
- biomethanol produced in stand-alone plants using from forest residues
- Each energy pathway is considered with and without CCS (Carbon Capture and Sequestration)

Methodology Energy efficiencies

- Woody biomass >> electricity
 - Stand-alone BIGCC plant: 50% conversion efficiency [40%]
- Woody biomass >> biomethanol
 - Gasification-synthesis biorefinery: 57% conversion efficiency [48%]
- CCS energy penalty
 - 20% [24%] (percent increase in fuel input per unit of delivered product)
- Fuel cycle energy (percent of LHV of delivered fuel)
 - Gasoline: 9%
 - Slash: 2.5% [2.1%]
 - Stumps: 4.6% [4.2%]

[Values in brackets are used in sensitivity analysis]

Methodology CO₂ emission of car and battery manufacture

- CO₂ emissions (tCO₂/vehicle) from manufacture of BEV and ICV cars of different sizes
- Vehicle production model includes chassis, drivetrain and battery
- BEV data includes production of 1 base-case battery

- CO₂ emissions (tCO₂/battery) from manufacture of batteries for small, medium and large size BEVs
- Using battery chemistries and processes that result in low, medium and high CO₂ intensities

	Car size					
	Small	Medium	Large			
BEV	8.0	10.0	14.4			
ICV	6.0	8.0	10.0			

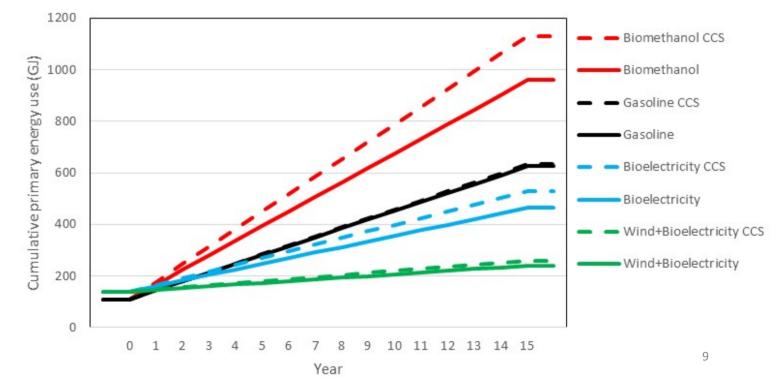
Car size	Battery intensity					
	Low	Medium	High			
Small	1.2	2.4	3.6			
Medium	2.0	4.0	6.0			
Large	4.0	8.0	12.0			

Methodology **Car operation**

- Final operational energy use (MJ/km) of different size cars
- Electrical energy includes wall-to-vehicle charging losses
- Liquid fuel energy is given as the lower heating value (LHV) of fuels including delivery to fueling stations
- Methanol and gasoline cars of the same size are assumed to have identical energy efficiencies

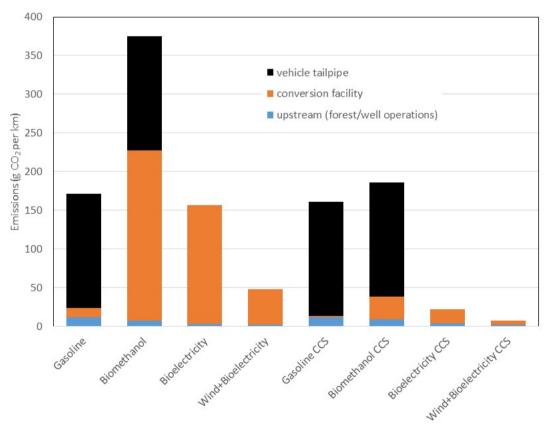
	Car size					
	Small	Medium	Large			
BEV	0.50	0.70	1.0			
ICV	1.6	2.1	2.5			

Methodology Scenario analysis of 68.7 billion km of annual passenger car driving


- Passenger cars in Sweden travelled 68.7 billion km in 2018
- We allocate **annually 60 TWh of forest residues to operate cars** for each of 8 energy pathways
- If more energy than 60 TWh is needed to operate the cars, gasoline is used instead
- If less energy than 60 TWh is needed to operate the cars, the surplus biomass produces electricity to replace fossil gas

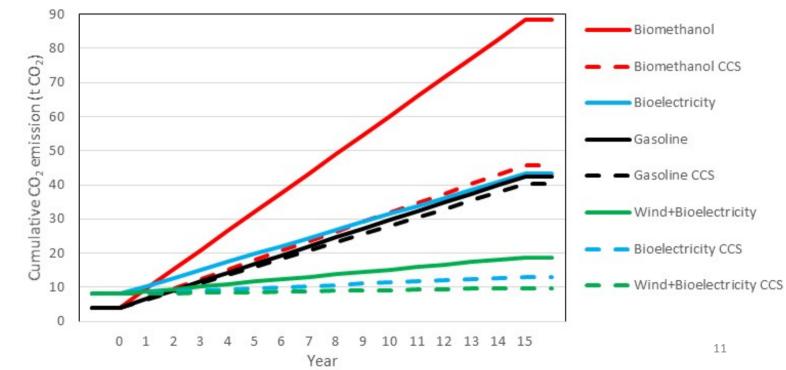
Results **Cumulative primary energy use (GJ)**

Per medium-size car during its 15-year life cycle



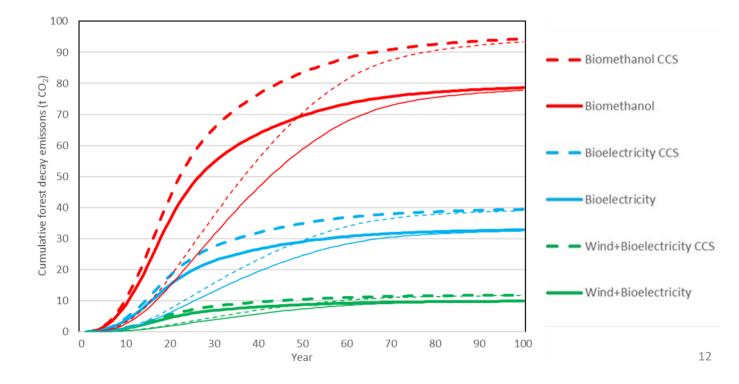
Results Vehicle operating emissions (g CO₂/km)

- Full fuel cycle
- Biogenic and fossil CO₂ emissions
- Medium-size cars


10

Results **Cumulative biogenic and fossil** CO₂ emissions (t CO₂)

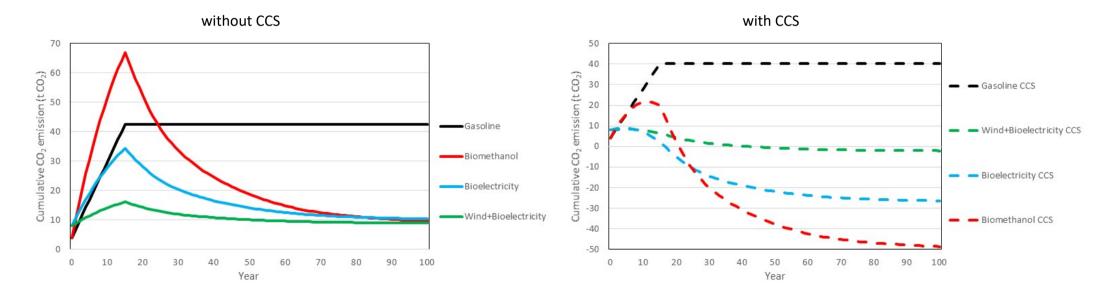
Per medium-size car during its 15-year life cycle



Results **Cumulative avoided forest decay emissions (t CO₂)**

Corresponding to harvest residues for medium-size car during its 15-year life span

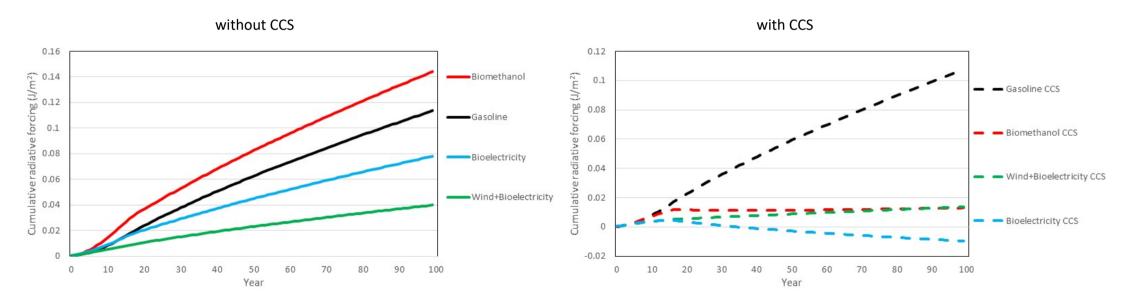
- thick lines: slash decay
- thin lines: stumps decay



Results

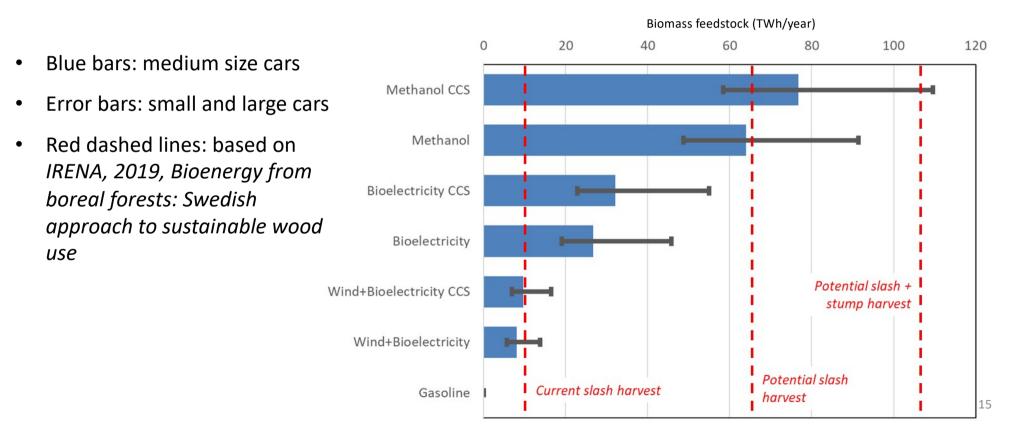
Cumulative net biogenic and fossil CO_2 emissions for each pathway, including avoided forest decay emissions (t CO_2)

Medium-size cars, operated 15 years, using slash

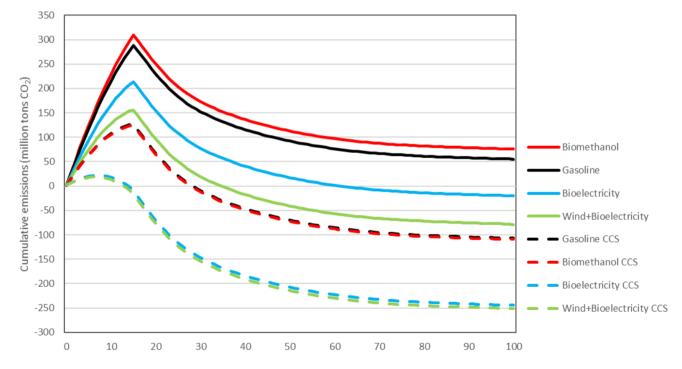


Results

Cumulative radiative forcing of net CO_2 emission including avoided forest decay emissions (J/m²), corresponding to emissions in the earlier figure


Medium-size cars, operated for 15 years, using slash

Scenario Required biomass feedstock to drive 68.7 billion km in passenger cars (TWh/year)

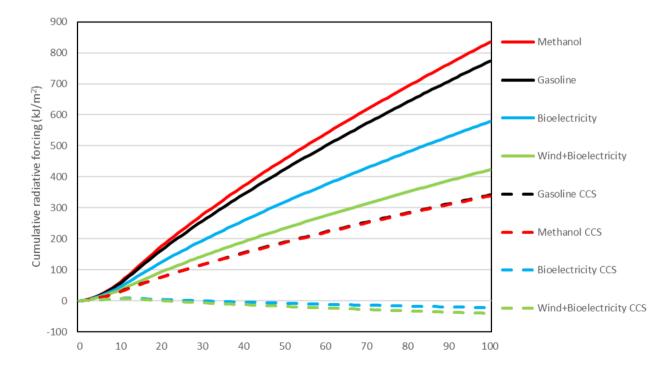


Scenario

Cumulative net biogenic and fossil CO_2 emissions (t CO_2) from 8 energy pathways, including avoided forest decay emissions, to drive 68.7 billion km annually during 15 years

- **60 TWh of forest slash** is allocated annually to power medium-size cars for 15 years
- If more energy than 60 TWh is needed for transport, gasoline is used instead
- If less energy than 60 TWh is needed for transport, the surplus slash makes electricity to replace fossil gas

7th International Conference on Smart Energy Systems 21-22 September 2021 #SESAAU2021



Scenario

Cumulative radiative forcing (J/m^2) from net CO₂ emission from 8 energy pathways, including avoided forest decay emissions, to drive 68.7 billion km annually during 15 years

- **60 TWh of forest slash** is allocated annually to power medium-size cars for 15 years
- **If more energy** than 60 TWh is needed for transport, gasoline is used instead
- If less energy than 60 TWh is needed for transport, the surplus slash makes electricity to replace fossil gas

Results **Sensitivity analysis**

Most important parameters:

- Car size
- Lifespan and driving distance

Less important parameters:

• Technology level (conventional vs. emerging)

Least important parameters:

- Battery type and number
- Biomass type and distance

Change in primary energy use caused by variation of parameters

	Gasoline	Biomethanol	Bioelectricity	Wind+Bioel	Gasoline CCS	Biomethanol CCS	Bioelectricity CCS	Wind+Bioel CCS
Base case (GJ)	625	959	464	240	632	1129	529	260
Small car	-24%	-24%	-26%	-24%	-24%	-24%	-26%	-24%
Large car	20%	20%	38%	34%	20%	20%	39%	34%
10,000 km per year	-27%	-30%	-23%	-14%	-28%	-30%	-25%	-15%
20,000 km per year	27%	30%	23%	14%	28%	30%	25%	15%
10-year service life	-27%	-30%	-23%	-14%	-28%	-30%	-25%	-15%
20-year service life	27%	30%	23%	14%	28%	30%	25%	15%
2 batteries	0.0%	0.0%	6.9%	13%	0.0%	0.0%	6.0%	12%
Low intensity battery	0.0%	0.0%	-3.4%	-6.7%	0.0%	0.0%	-3.0%	-6.2%
High intensity battery	0.0%	0.0%	3.4%	6.7%	0.0%	0.0%	3.0%	6.2%
Stumps biomass	0.0%	1.9%	1.6%	0.9%	0.0%	1.9%	1.7%	1.0%
Local biomass transport	0.0%	-0.4%	-0.3%	-0.2%	0.0%	-0.4%	-0.3%	-0.2%
Conventional technology	0.0%	18%	17%	12%	0.2%	22%	21%	15%

Change in radiative forcing caused by variation of parameters

	Gasoline	Biomethanol	Bioelectricity	Wind+Bioel	Gasoline	Biomethanol	Bioelectricity	Wind+Bioel
			/		CCS	CCS	CCS	CCS
Base case (J/m ²)	0.115	0.237	0.117	0.052	0.108	0.123	0.036	0.028
Small car	-25%	-25%	-31%	-34%	-26%	-25%	-36%	-38%
Large car	27%	23%	54%	68%	28%	27%	79%	90%
10,000 km per year	-30%	-32%	-27%	-19%	-30%	-30%	-12%	-5.7%
20,000 km per year	30%	32%	27%	19%	30%	30%	12%	5.7%
10-year service life	-29%	-30%	-26%	-18%	-29%	-29%	-12%	-5.4%
20-year service life	27%	29%	25%	17%	27%	28%	11%	5.2%
2 batteries	0.0%	0.0%	9.2%	21%	0.0%	0.0%	30%	39%
Low intensity battery	0.0%	0.0%	-4.9%	-11%	0.0%	0.0%	-16%	-21%
High intensity battery	0.0%	0.0%	4.9%	11%	0.0%	0.0%	16%	21%
Stumps biomass	0.0%	1.6%	1.4%	0.9%	0.0%	3.8%	5.3%	2.1%
Local biomass transport	0.0%	-0.3%	-0.3%	-0.2%	0.0%	-0.7%	-1.0%	-0.4%
Conventional technology	0.0%	28%	20%	14%	0.02%	8.7%	11%	5.5%

Conclusions

- BEVs use less primary energy than ICVs
- Biomass usage is 7-9 times higher for biomethanol than for wind+bioelectricity pathways
- BEVs have lower climate impact than ICVs
- Gasoline and biomethanol cars have similar climate impacts
- CCS has limited benefit for ICVs due to tailpipe emissions
- Bioelectricity with CCS and BEVs will give some global cooling effect
- Comprehensive sensitivity analysis shows that our conclusions are robust

Shifting to electric cars, while scaling up renewable electricity generation, is a wise strategy for climate-adapted passenger car transport

Powered by

THANK YOU FOR YOUR ATTENTION

See full report at

https://doi.org/10.1016/j.energy.2021.121546

Leif Gustavsson and Roger Sathre Sustainable Built Environment Research Linnaeus University, Växjö, Sweden

Leif Gustavsson leif.gustavsson@lnu.se

Roger Sathre roger.sathre@lnu.se

Linnæus University