Optimising heat consumption at
micro-level using user centric
data driven model
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Research focus

Novel approach to estimate the heat demand.

Calculating the U-value.
Novel approach to optimise heat usage at home.
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User profile based on the customer behaviour.
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Overview

Prediction Storage Analysis
Algorithm

Control

Strategy
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Data
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* Frequency is set to the Day
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1. Heat Estimation
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Heat Estimation
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Heat Estimation

Qrotal = QLosses T 2713;1 QHome 1
Quome = U A(Tindoor — Toutdoor) 2
QHome — QLivingroom + QBedroom 3
Qrome = UA(TPredict — TWeather(predict)) 4
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Heat Estimation

Accuracy
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Floor Plan and U-value

3.67 mm

Wall Types RVE][I]]
(W/m2K)
1 Solid wall in very old 2.30
buildings
i Solid wall in old buildings |1.70
: Unfilled cavity wall 1.50

Solid wall with 100 mm 0.32
thick external insulation

3 Filled cavity wall with 100 |0-25
mm thick external
insulation
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Heat Estimation
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2. Calculating U-value

Q
U — HeatMeter 5
A(TSensor_TWeather)

* Heat meter, Sensor and weather are already collected in the data
store.

* Area exposed to external environment is constant.
 Calculating U-value can allow to improve the insulation of home.
* Forecasting of U value can help with the heat estimation.
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3. Optimise heat consumption

* Experiment is setup in the lab with two radiators, representing living
room and bedroom.

* The control strategy is developed based using scheduler of previous
work.
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timise heat consumption
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Control Strategy

SIEMENS

User

Web Application && Mabile App

Mode Call for Scheduler Service

Automatic
Control Dasboard Ul Generate Schedule

Control Signals

Radiator

Bedroom

Living Room
Living Room Motion

True False

Living Room Turn On Living Room Turn Off

Bed Room Motion
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Cost Comparison

Cost Comparision

Old Cost New Cost
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4. User profile

* Each user is unique, and their consumption as well.

* The same data can be transferred and used by the companies and
customer in case of home switch.

* The models would be built for individual customer.
* This would allow model to adapt to customer behaviour change.
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User Profiles
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User Profiles
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Comparison of temperature
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Conclusions

* Predicting desired temperature based on the individual customer shows
high accuracy.

* Heat prediction would improve due to micro-level prediction approach.
* The novel approach of calculating U-value.

* Control strategy tested in lab environment, could be used to optimise the
heat consumption at customer level.

* The customer profiles can be built to improve the heat prediction and
adhere to the customers behaviour.

* Overall, Human centric approach is quiet novel.
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Thank you for Listening
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