Optimising heat consumption at micro-level using user centric data driven model

Presenter: Kevin Naik

Research focus

- 1. Novel approach to estimate the heat demand.
- 2. Calculating the U-value.
- 3. Novel approach to optimise heat usage at home.
- 4. User profile based on the customer behaviour.

Overview

TRENT UNIVERSITY

Data

• Frequency is set to the datasets are set to 5 min.

Project	Feature
	Hour
	Minute
	Day
	Weekday
	Month
	Outdoor Temperature
	Temperature
REMOURBAN	Motion
	Heat Demand
	Pressure
	Humidity
	Wind Speed
	Sunset time
	Sunrise time
	Weather Type

NOTTINGHAM

Data

TRENT UNIVERSITY

Date Time

NTU

NOTTINGHA

TRENT UNIVERSITY

$$Q_{Total} = Q_{Losses} + \sum_{k=1}^{n} Q_{Home}$$

$$Q_{Home} = UA(T_{indoor} - T_{outdoor})$$

$$Q_{Home} = Q_{Livingroom} + Q_{Bedroom}$$

$$Q_{Home} = UA(T_{Predict} - T_{Weather(predict)})$$

$$4$$
EMENS NOTTINGHAN

NTU

TRENT UNIVERSITY

SIEMENS

NOTTINGHAM[®] TRENT UNIVERSITY

Floor Plan and U-value

Wall Types	U-value (W/m ² K)
Solid wall in very old buildings	2.30
Solid wall in old buildings	1.70
Unfilled cavity wall	1.50
Solid wall with 100 mm thick external insulation	0.32
Filled cavity wall with 100 mm thick external insulation	0.25

NOTTINGHAM

Time Series

2. Calculating U-value

$$U = \frac{Q_{HeatMeter}}{A(T_{Sensor} - T_{Weather})}$$

5

- Heat meter, Sensor and weather are already collected in the data store.
- Area exposed to external environment is constant.
- Calculating U-value can allow to improve the insulation of home.
- Forecasting of U value can help with the heat estimation.

SIEMENS

NOTTINGHAM

3. Optimise heat consumption

- Experiment is setup in the lab with two radiators, representing living room and bedroom.
- The control strategy is developed based using scheduler of previous work.

Optimise heat consumption

Time Series

Control Strategy

SIEMENS

NOTTINGHAM

Cost Comparison

NTU

4. User profile

- Each user is unique, and their consumption as well.
- The same data can be transferred and used by the companies and customer in case of home switch.
- The models would be built for individual customer.
- This would allow model to adapt to customer behaviour change.

User Profiles

Time Series

SIEMENS

NOT INGHAM

User Profiles

NOTTINGHAM

Comparison of temperature

SIEMENS

NOTTINGHAM

Conclusions

- Predicting desired temperature based on the individual customer shows high accuracy.
- Heat prediction would improve due to micro-level prediction approach.
- The novel approach of calculating U-value.
- Control strategy tested in lab environment, could be used to optimise the heat consumption at customer level.
- The customer profiles can be built to improve the heat prediction and adhere to the customers behaviour.
- Overall, Human centric approach is quiet novel.

Thank you for Listening

