Generic Input Generation for Residential District Energy System Models from Open Data for Germany

21-22 September 2021 | <u>K. KNOSALA</u>, N. PFLUGRADT, L. KOTZUR, D. STOLTEN

7th International Conference on Smart Energy Systems 21-22 September 2021

k.knosala@fz-juelich.de IEK-3: Techno-Economic Systems Analysis

Member of the Helmholtz Association

Bottom-up Modeling at IEK-3: Techno-economic Systems Analysis¹

[1] https://www.fz-juelich.de/iek/iek-3/ [2] https://github.com/FZJ-IEK3-VSA

Member of the Helmholtz Association

Temporal

- Demand and generation time series
- Storage design (from daily to seasonal storage)

Spatial

- Transmission infrastructure
- Placement recommendations

Sectoral

Sector-coupling opportunities

Some of our open-source contributions²:

- Framework for Integrated Energy System Assessment (FINE)
- Time Series Aggregation Module (TSAM)
- Load Profile Generator (LPG)
- Renewable Energy Simulation Toolkit (RESKit)
- Geospatial Land Availability for Energy Systems (GLAES)

2

Parametrization in District Energy Systems Modeling

State of the art

- Absence of adequate detailed building level data for whole Germany^{1,4}
- Laborious data collection and classification (e.g., building age by visual survey^{1,2})
- Significant modelling errors when the archetype buildings are not tailored to the studied location^{1,4}
- Household details missing for energy systems analysis at building/district level^{3,} use of synthetic populations⁵

Research goals

- Automated precise description of building typology (including construction year)
- Per rooftop surface area and orientation for renewable generation simulation
- Socio-economic household attributes (e.g. family composition, commuting distances)
- Scalable workflow based on open data and open software for energy system analysis

[1] I. De Jaeger, G. Reynders, C. Callebaut, und D. Saelens, "A building clustering approach for urban energy simulations", Energy and Buildings, Bd. 208, S. 109671, Feb. 2020, doi: 10.1016/j.enbuild.2019.109671.

[2] R. Braun, V. Weiler, M. Zirak, L. Dobisch, V. Coors, und U. Eicker, "Using 3D CityGML Models for Building Simulation Applications at District Level", 2018 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), 2018, doi: 10.1109/ICE.2018.8436355.

[3] M. Schwanebeck, M. Krüger, und R. Duttmann, "Improving GIS-Based Heat Demand Modelling and Mapping for Residential Buildings with Census Data Sets at Regional and Sub-Regional Scales", Energies, Bd. 14, Nr. 4, Art. Nr. 4, Jan. 2021, doi: 10.3390/en14041029.

[4] O. M. Garbasevschi u. a., "Spatial factors influencing building age prediction and implications for urban residential energy modelling", Computers, Environment and Urban Systems, Bd. 88, S. 101637, Juli 2021, doi: 10.1016/j.compenvurbsys.2021.101637.

[5] S. Thorve, S. Swarup, A. Marathe, Y. Chungbaek, E. K. Nordberg, und M. V. Marathe, "SIMULATING RESIDENTIAL ENERGY DEMAND IN URBAN AND RURAL AREAS", in 2018 Winter Simulation Conference (WSC), Dez. 2018, S. 548–559. doi: 10.1109/WSC.2018.8632203.

Per Building Parametrization for Regional Energy System Simulation

Automated parametrization for profile generation of realistic residential districts for **any** region in Germany

Combining Open Datasets

Geo-Data from Federal States¹

Official building address coordinates, 3D geometries (cityGML), parcel footprints

Open Street Data (Open Street Maps²)

Weather Data (SARAH³, TRY2015⁴)

Building Typologies and Material Databases

Heat transfer coefficients from TABULA⁵

Statistical Data from Census⁶

- Information contains: Building age, number of households, residents age etc.
- Resolution 100m x 100m (13 M tiles)
- Hold every 10 years (next planned for 2022)

[1] <u>https://gdz.bkg.bund.de/</u> [2] <u>https://www.openstreetmap.org</u>
[3] DOI:10.5676/EUM_SAF_CM/SARAH/V002
[4] <u>https://www.dwd.de/DE/leistungen/testreferenzjahre/</u>
[5] https://episcope.eu/ [6] https://www.zensus2011.de/

Availability of open geo-data on buildings in German federal states

3D building geometries (left) and OSM street network (right)

Member of the Helmholtz Association

Disaggregation of Open Statistical Data from Census to Building Level

Staggered attribution:

- 1. Buildings
- 2. Apartments and families
- 3. Persons

Distribution MIQP* for per tile and statistic (Building, Apartment, Person):

• Goal function:

 $\min_{\text{Attributes}} \sum_{i=1}^{n} ((\text{Occurrences in statistic} - \text{Occurrences attributed})^2 - \sum_{\text{Attributes}} \text{Correlation factor})$

- Logical Constraints e.g.:
 - "Set only one household per apartment."
 - Larger buildings have more apartments than smaller ones

Problem sizes for 11 Buildings, mostly MFH 3-6 Apartments per Building:

- 1. 2182 integer (2167 binary)
- 2. 16352 integer (16327 binary), 25 quadratic objective terms

3. 31268 integer (31252 binary), 15 quadratic objective terms

* Mixed Integer Quadratic Program

Building Parametrization – Define Building Hull

Forschungszentrum

Member of the Helmholtz Association

IEK-3: Techno-Economic Systems Analysis

Mobility Parametrization – Mode Choices and Distances

Conclusion

- Comprehensive data workflow for bottom-up energy systems analysis at household level without manual data acquisition for resident, building and mobility data
- Allows for simulation of demand and generation profiles from single building to national scale
 - Resident activity simulation and mobility demands per household¹
 - Building hull heat transfer²
 - Solar potential simulation per rooftop³

Outlook

- Open-source tool for the generation of district energy system models
- Nation-wide data sets on energy demand at building resolution

[1] https://github.com/FZJ-IEK3-VSA/LoadProfileGenerator

- [2] https://github.com/FZJ-IEK3-VSA/tsib
- [3] https://github.com/FZJ-IEK3-VSA/RESKit

Thank you for your attention!

21-22 September 2021 | K. KNOSALA, N. PFLUGRADT, L. KOTZUR, D. STOLTEN

7th International Conference on Smart Energy Systems 21-22 September 2021

k.knosala@fz-juelich.de IEK-3: Techno-Economic Systems Analysis

Member of the Helmholtz Association