

DESIGN OF COMBINED HEATING AND COOLING NETWORK WITH RING TOPOLOGY

Joseph Jebamalai

comsof.com

OVERVIEW

Combined DHC network - Ring topology

- Ring topology, 3-pipe configuration (Config 1) \rightarrow Redundancy, flexibility, prosumer integration
- How much does it cost?
 - Using a case study from Kortrijk, Belgium 0
- Would it be better cost-wise when compared with branched network (Config 2)?
- Comparison of other design configurations with ring topology
 - 3-pipe configuration with ring (**Config 1**) 0
 - ULTDH with heat pumps and ring (**Config 3**) 0

CASE STUDY - INPUTS

Kortrijk, Belgium – 2300 buildings, 3 heat sources, and 2 cold sources

BUILDING INPUTS:

- Open-source street level gas consumption data
 - Mapped street level to building level using building area ratio 0
- Building types are categorized as
 - Residential 0
 - Commercial (< 0.15 GWh/year) 0
 - Industrial (> 0.15 GWh/year) 0
- Synthetic load profiles \rightarrow 3 building types
 - Hourly profiles, 2020 0

HEAT SOURCE:

- Heat source \rightarrow IMOG, waste incineration plant
 - 2 km from the network 0
 - Incinerate 65,000 tons of municipal waste per year 0
 - 1 ton of municipal waste \rightarrow 2 MWh heat & 2/3 MWh electricity 0
 - Available heat \rightarrow 130 GWh / year Ο
 - Source peak capacity \rightarrow 15 MW (Continuous operation) 0

Case study area

CASE STUDY - NETWORK

Network demand and peak load

NETWORK DEMAND:

- Building demand \rightarrow Load profiles, annual gas consumption data
- Network demand \rightarrow Aggregation of building heat demand
- Network annual heat demand 95 GWh/year

PEAK LOAD AND NETWORK LENGTH:

- Network peak load 34 MW (without storage)
- Expected network length 63 km

comsof.com

Daily profile of different building types

Hourly network heat demand

COOLING DEMAND DATA

Open source project – Hotmaps

- HOTMAPS.EU
- Cooling demand is calculated based on these open source data

LAYERS		
LAYERS CALCULATION MODULES		T
Buildings –		de n 1
HEAT DENSITY TOTAL	1	644
HEAT DENSITY RESIDENTIAL SECTOR	Zones selected	
HEAT DENSITY NON-RESIDENTIAL SECTOR	Bounding box Scale	2 He
Z COOLING DENSITY TOTAL	LOAD RES	
	CLEAR 1	
GROSS FLOOR AREA TOTAL		
GROSS FLOOR AREA RESIDENTIAL		T
GROSS FLOOR AREA NON-RESIDENTIAL	Lissegem	
BUILDING VOLUMES TOTAL		
BUILDING VOLUMES RESIDENTIAL		
BUILDING VOLUMES NON-RESIDENTIAL		N C
SHARE OF GROSS FLOOR AREA -		
CONSTRUCTIONS BEFORE 1975		A BE
SHARE OF GROSS FLOOR AREA -	Bedribe ne rem	
CONSTRUCTIONS BETWEEN 1975 AND 1990		
SHARE OF GROSS FLOOR AREA -		
CONSTRUCTIONS BETWEEN 1990 AND 2000	Mar	ke
SHARE OF GROSS FLOOR AREA -		
CONSTRUCTIONS BETWEEN 2000 AND 2014	500 m	

• Cooling demand density and gross floor area density has been extracted from the public website (EU Horizon 2020 project)

NETWORK DESIGN

Ring topology

- 3 pipe network with ring \rightarrow 3 heat sources, 2 cold sources, and 5 substations
- Transport network \rightarrow Ring
- Distribution network \rightarrow branched

s, 2 cold sources, and 5 substations

- Steel pipes
- At 10 bar
- 90 °C Hot supply and 15°C Cold supply
- Total public trench length: 61,040 meters
- Total network linear heat density: 1.56 MWh/m

Ring topology vs branched

TOTAL NETWORK COST:

- Ring topology: **56.69 million €** Ο
- Branched: **53.78 million €** 0
- Ring topology is **5.4% costlier** than branched
 - Ring in transport layer only 0

TRANSPORT LAYER

Ring topology \rightarrow 35% costlier 0 than branched

(million cost Total network

Three pipe heating and cooling network – 3rd generation (Config 1)

- Two supply pipe
 - 0
 - Another supply pipe circulates hot water from heat source to the buildings 0
- sources

comsof.com

One supply pipe circulates chilled water from cooling source (chiller plant) to the buildings

One return pipe \rightarrow Returns heated water from cooling supply pipe and cooled water from the buildings back to the

Two pipe heating and cooling network (Heat pumps at building side) – 5th generation (Config 3)

- buildings
- buildings back to the sink

River

One supply pipe \rightarrow Circulates ambient temperature water from low temperature source to the

One return pipe \rightarrow Returns cold water when heating and returns hot water when cooling from the

Building demand points with heat pump

3rd generation networks vs 5th generation networks

3-pipe DHC network (3rd generation): ULTDHC network (5th generation):

- High temperature source
- Network temperature levels: 70 to 90 °C • Network temperature levels: 10 to 25 °C
- Few sources are available (Waste incinerator, geothermal, CHP)

• Low temperature source

 Vast range of source availability (Rivers, lakes, sewage water, data centers, renewable sources, etc.)

• **Problem:** 10 to 25 °C: Not enough to heat the buildings directly \rightarrow Heat pumps

3 pipe network with ring (Config 1) vs ULTDH network with heat pumps and ring (Config 3)

Description	3 pipe network (Config 1)	ULTDH network (Config 3)
Temperature	High	Low
Ring topology	Yes	Yes
Heat pumps at buildings	No	Yes

TOTAL NETWORK COST:

- 3 pipe: **56.69 million €**
- Heat pump: 69.25 million €
- ULTDH with heat pump is 22.2% costlier than 3-pipe configuration
 - Ring in transport layer only

CONCLUSION

Combined DHC network with ring topology

- Combined heating and cooling network is designed with **ring topology** using Comsof heat
- Total network cost \rightarrow Ring network is 5.4% costlier than branched network However, it provides the redundancy, flexibility, and possible prosumer integration 0
- Transport layer network cost \rightarrow Ring network is 35% costlier than branched network
- Ultra low temperature district heating (ULTDH) with heat pump configuration \rightarrow 22% costlier than 3-pipe configuration

Config 1 (3-pipe network with ring)	Config 2 (Branched network)	Config 3 (ULTDH with heat pumps and ring)
56.69 million €	53.78 million €	69.25 million €

FUTURE WORK:

Prosumer integration study

CONTACT Comsof

- Kurt Marlein
 - Product Manager 0
 - kurt.marlein@comsof.com 0
 - +32 9 275 31 00 0
 - +32 473 53 83 45 0

- Joseph Jebamalai
 - **Innovation Engineer** 0
 - joseph.jebamalai@comsof.com 0
 - +32 487 94 98 47 0

