FfE

Heat Transformation Munich – Development of a systemic cost optimal heat supply transformation

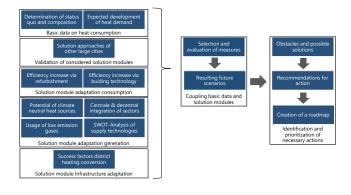
ODGH

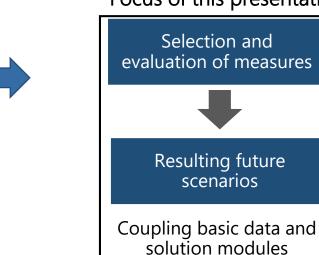
Britta Kleinertz et al.

01.10.2021

Project target 1 Technology prioritization 2 Simulation tool and results 3 Findings and outlook 4

Project target of "Heat Transformation Munich"




Aim of the study

- Development of a **long-term concept** to achieve climate neutrality by 2035
 - Only selection and investment in longterm **target-conform measures**
- Development of **ambitious and feasible transformation pathways** with effective CO₂ saving measures using transparent cost estimation
- Use of a **holistic view** on the topic of heat supply incl. analysis of obstacles
- Consideration of possible instruments to overcome the barriers

Overall research approach (see Paper & presentation Backup)

Focus of this presentation

Prioritization of measures according to CO_2 abatement costs – Methodology and Viewpoint

Aim of prioritization

 Select long-term most cost efficient measures for emission abatement

Formula for CO₂ abatement costs

$$k_{CO_2} = \frac{K_{Subst} - K_{Ref}}{E_{Ref} - E_{Subst}}$$

Ref

= CO₂-abatement cost in €/t CO₂
= Costs in €/a
= Emissions in €/a
= Substitution technology
= Reference technology -> Gas boiler

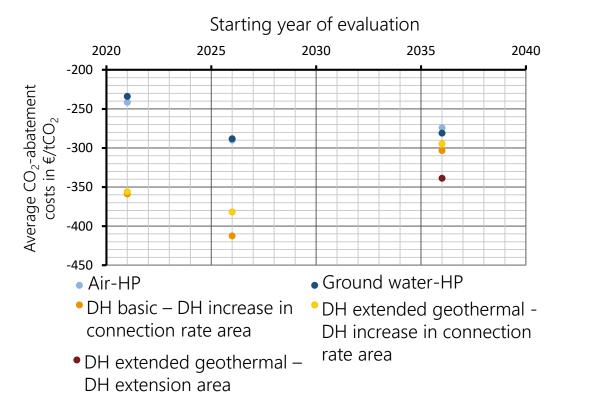
- Comparison of measures from viewpoint of municipal heating strategy development:
 - Included: Energy price and taxes, CO₂ price, long-term expected subsidies by federal government
 - Interest rate 2%
 - Usage of technical lifetime
 - Exclusion of VAT on investments and energy sources

Details available in paper: Sources for investment cost functions, maintenance costs; expected development of financial support by technology

Regarded technologies and boundary conditions

Selected technologies

- Air heat pump
- Ground water heat pump
- District Heating
 - a. Basic scenario DH increase in connection rate area
 - + Extended geothermal scenarios
 - b. DH increase in connection rate area
 - c. DH extension area

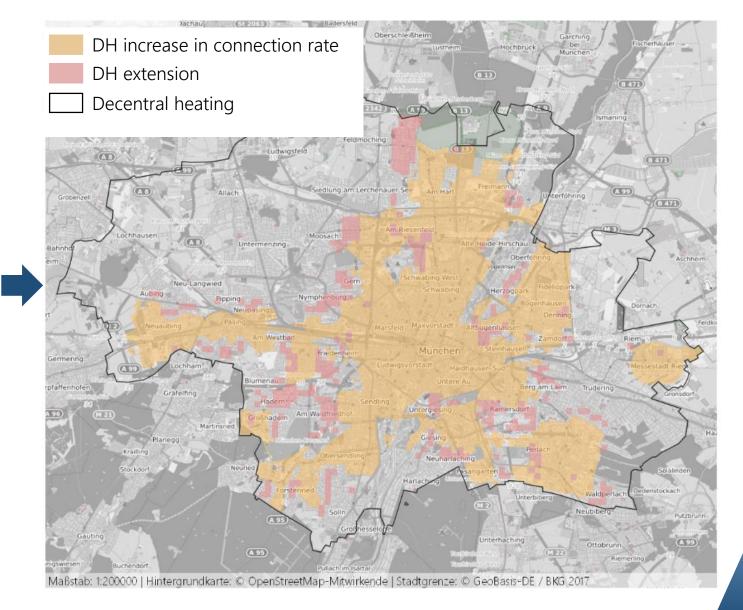

20 18 16 (fossil fuels upper heating values) 14 Costs in €/kWh exkl. VAT 12 10 8 6 Δ 2 0 2021 2025 2030 2035 2045 2050 2040 \Box Electricity for Marketing Market price Concession heat pumps Renewable levy Network charges Taxes ☑ Natural gas Emission allowance Further levies VAT ☑ Heating oil

Development of fuel prices

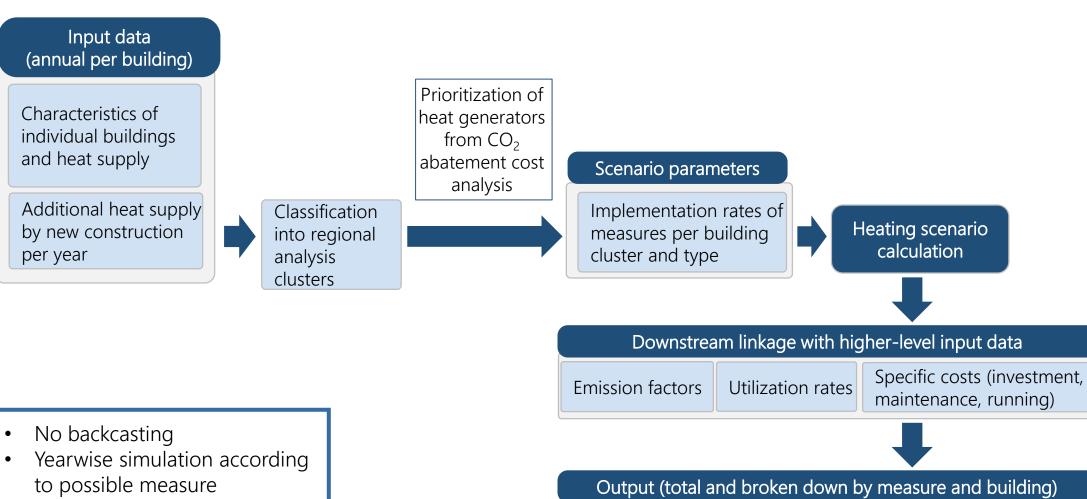
Core results of CO₂-abatement costs

Results for medium sized **refurbished** buildings➢ Average of abatement cost over 25 years

- All CO₂ abatement costs have negative values
 - CO₂-emissionen mitigation leads to cost reduction compared to reference technology (natural gas boiler)
 - Favourable development of framework parameters (e.g. energy prices, interest rate, promotions)
- Prioritization varies depending on heat demand of individual consumers and their localization
 - For smaller buildings HP are favourable


Overview on simulation tool composition – regionalized simulation

Input data (annual per building)

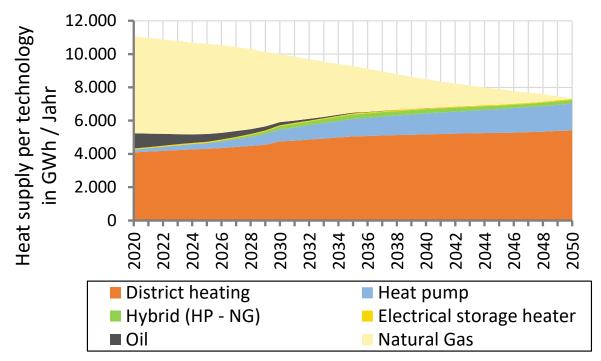

Characteristics of individual buildings and heat supply

Additional heat supply by new construction per year

Classification into regional analysis clusters

Overview on stepwise simulation approach

Costs for heating


implemtation per year

CO₂ emissions

Final energy consumption

Overview on munich-related results regarding heat supply composition

Results available per regional cluster

Simulation done for

- Two different scenarios
- One reference scenario

Additional individual simulation of

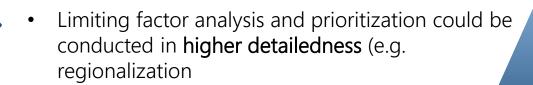
• District heating composition

Further analyses

- Effect on electric supply system
- Resulting costs
- Changes in costs per household

Most relevant results and outlook for Munich and research approach

Key findings


- Economic challenges, limited potentials for low emission heat sources and capacities for implementation restrict speed of heat transition
- A heating transformation strategy must be transparently coordinated between utility and city
- Securing land is of high importance here
- Most important technical solutions are refurbishment, heat pumps and climate-neutral district heating

Outlook for strategy implementation

- Improvement of data basis on potentials for low emission
- Analysis should be increased in **regional** detailedness
- Cost reductions due to application of **regionalized concentrated measure implementation** should be integrated (esp. for district heating, refurbishment)

- Limiting factors are key parameters, but realistic estimation is complicated
- CO₂ abatement costs are suitable for technology prioritization, however, analysis must be conducted carefully and including sensitivities

Britta Kleinertz, M.Sc

Project engineer, researcher Forschungsgesellschaft für Energiewirtschaft mbH Tel.: +49(0)89 15 81 21– 39 Email: bkleinertz@ffe.de

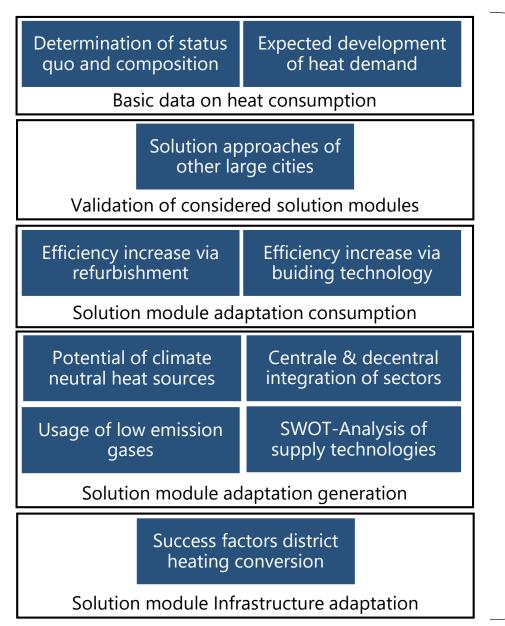
Dr. Serafin von Roon

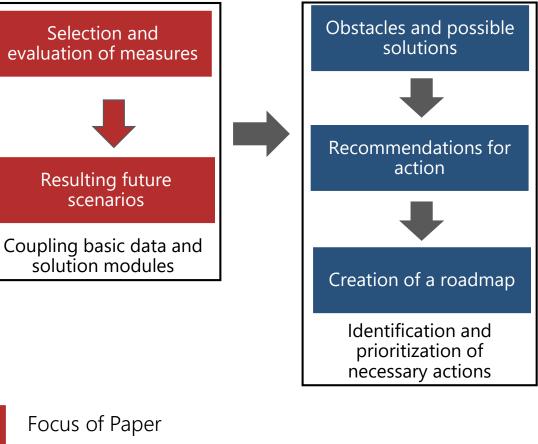
Geschäftsführer Forschungsgesellschaft für Energiewirtschaft mbH Tel.: +49(0)89 15 81 21– 51 Email: sroon@ffe.de

Christof Timpe, Dipl. Ing. Dr. Veit Bürger

Lead: Field Energy & Climate Protection Öko-Institut e.V. Tel.: +49(0)761 45295-225 Email: c.timpe@oeko.de

Deputy lead: Field Energy & Climate Protection Öko-Institut e.V. Tel.: +49(0)761 45295-25^o Email: v.buerger@oeko.de


Dr. Johanna Cludius


Senior Researcher Energie & Klimaschutz Öko-Institut e.V. Tel : +49(0)30 405085

Email: j.cludius@oeko.de

Workflow of research project

Basic structure was further developed in "District heating supply transformation – Strategies, measures, and status quo of network operators' transformation phase" by Kleinertz, Gruber soon published in Energy