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Relevance and content

Relevance Content

1. The integration of VRES requires 1. Overview
flexibility in the energy system 2. Case of Hvide Sande

2. Energy system integration allows 3. Technical potential at the EU level
the exploitation of higher degree of , _ ,
flexibility 4. Discussion and conclusion

3. District heating are good candidate
since they are natural aggregators
of both electric and heat demand
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How can district heating provide balancing services?

Positive imbalance

CHPs I The disruption of heat supply must be
compensated by exploiting flexibility in

Heat Pumps / Electric Boilers the district heating system with:

* Active storage
Negative imbalance

* Passive storage
CHPs

e Technology shift
Heat Pumps / Electric Boilers I
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(Denmark)
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in 2017
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Deployment of thermal storage in district heating systems

Country Denmark Sweden Finland
Geographical scope District DK SE Helsinki

heat/'ng all DH systems all DH systems 90% heat supply

S Lund et al. 2018 Hennessy et al. 2019 Salpakari et al. 2016

oliids Hedegaard et al. 2012 Werner 2017 Mikkola et al. 2016

Annual average daily heat demand GWh 115 156 17-20
Passive storage GWh 5 1.2
Annual average heat load shift Hours 1 1.4-1.7
Active storage GWh 50 42
Annual average heat load shift Hours 10 6

Annual average daily heat demand /24

A l heat load shift =
nnual average heat load shif Passive /Active storage
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The technical potential for balancing capacity

Assumptions

1.

The flexibility in DH system is
enough to provide balancing

. The actual operations of the district

heating systems are not taken into
account

. The only limitation is given by

ramping rates of the interface
technologies

Method

1. Data are retrieved on district
heating, CHP and P2H per country,
from 2000 to 2050 (POTEnCIA

scenario)

2. The capacity of the interface
technologies that can satisfy the
ramping condition of FCR, aFRR
and mFRR are calculated

3. Only historical reserve capacity
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The technical potential for balancing capacity — EU
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The technical potential for balancing capacity — EU
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The technical potential for balancing capacity — EU
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The technical potential for balancing capacity — EU
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The technical potential for balancing capacity — EU
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What if we apply other scenarios?
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Discussion and conclusion

Discussion Conclusions

1. Limited progress in coupling of 1. Studied the capacities of district
power and district heating for heating networks (CHP/P2H) to
balancing services provide balancing services

2. Scarcity of data available related to m==) technical potential is high

district heating 2. The economic and market potential

3. District heating are also suitable to should be evaluated for each
provide flexibility on a longer time system by the district heating
frame — e.g. intraday operator

4. Future of CHP
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Thanks for your attention!

Do not hesitate to contact me for any
further information at
annika.boldrini@ec.europa.eu
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