

The potential of district heating systems to provide balancing services in the European Union

Annika Boldrini 20-21/09/21

Relevance and content

Relevance

- 1. The integration of vRES requires **flexibility** in the energy system
- 2. Energy **system integration** allows the exploitation of higher degree of flexibility
- 3. District heating are good candidate since they are **natural aggregators** of both electric and heat demand

Content

- 1. Overview
- 2. Case of Hvide Sande
- 3. Technical potential at the EU level
- 4. Discussion and conclusion

INTRODUCTION REVIEW EU POTENTIAL CONCLUSION 20-21/09/2021 — #3

Heat demand

Heat supply

How can district heating provide balancing services?

Positive imbalance

CHPs

Heat Pumps / Electric Boilers

The disruption of heat supply must be compensated by exploiting **flexibility in the district heating system** with:

- Active storage
- Passive storage
- Technology shift

Negative imbalance

CHPs

Heat Pumps / Electric Boilers

Hvide Sande district heating (Denmark)

136 TJ of heat in 2017

Deployment of thermal storage in district heating systems

	Country	Denmark	Sweden	Finland
Geographical scope	District heating	DK all DH systems	SE all DH systems	Helsinki 90% heat supply
	Source	Lund <i>et al</i> . 2018 Hedegaard <i>et al</i> . 2012	Hennessy <i>et al</i> . 2019 Werner 2017	Salpakari <i>et al</i> . 2016 Mikkola <i>et al</i> . 2016
Annual average daily heat demand	GWh	115	156	17-20
Passive storage	GWh	5		1.2
Annual average heat load shift	Hours	1		1.4-1.7
Active storage	GWh	50	42	
Annual average heat load shift	Hours	10	6	

 $Annual\ average\ heat\ load\ shift = \frac{Annual\ average\ daily\ heat\ demand\ /24}{Passive/Active\ storage}$

Deployment of thermal storage in district heating systems

Geographical scope	Country	Denmark	Sweden	Finland
	District heating	DK all DH systems	SE all DH systems	Helsinki 90% heat supply
	Source	Lund <i>et al</i> . 2018 Hedegaard <i>et al</i> . 2012	Hennessy <i>et al</i> . 2019 Werner 2017	Salpakari <i>et al</i> . 2016 Mikkola <i>et al</i> . 2016
Annual average daily heat demand	GWh	115	156	5 17-20
Passive storage	GWh	5		1.2
Annual average heat load shift	Hours	1		1.4-1.7
Active storage	GWh	50	42	2
Annual average heat load shift	Hours	10		5

 $Annual\ average\ heat\ load\ shift = \frac{Annual\ average\ daily\ heat\ demand\ /24}{Passive/Active\ storage}$

Deployment of thermal storage in district heating systems

	Country	Denmark	Sweden	Finland
Geographical scope	District heating	DK all DH systems	SE all DH systems	Helsinki 90% heat supply
	Source	Lund <i>et al</i> . 2018 Hedegaard <i>et al</i> . 2012	Hennessy <i>et al</i> . 2019 Werner 2017	Salpakari <i>et al</i> . 2016 Mikkola <i>et al</i> . 2016
Annual average daily heat demand	GWh	115	156	17-20
Passive storage	GWh	5		1.2
Annual average heat load shift	Hours	1		1.4-1.7
Active storage	GWh	50	42	
Annual average heat load shift	Hours	10	6	

 $Annual\ average\ heat\ load\ shift = \frac{Annual\ average\ daily\ heat\ demand\ /24}{Passive/Active\ storage}$

Assumptions

- 1. The flexibility in DH system is enough to provide balancing
- 2. The **actual operations** of the district heating systems are not taken into account
- 3. The only limitation is given by ramping rates of the interface technologies

Method

- Data are retrieved on district heating, CHP and P2H per country, from 2000 to 2050 (POTEnCIA scenario)
- The capacity of the interface technologies that can satisfy the ramping condition of FCR, aFRR and mFRR are calculated
- 3. Only historical reserve capacity

Total capacity interface tech.

Heat supply by DH - secondary axis

What if we apply other scenarios?

Discussion and conclusion

Discussion

- 1. Limited progress in coupling of power and district heating for balancing services
- 2. Scarcity of data available related to district heating
- 3. District heating are also suitable to provide flexibility on a longer time frame e.g. intraday
- 4. Future of CHP

Conclusions

- 1. Studied the capacities of district heating networks (CHP/P2H) to provide balancing services
 - technical potential is high
- 2. The economic and market potential should be evaluated for each system by the district heating operator

Thanks for your attention!

Do not hesitate to contact me for any further information at annika.boldrini@ec.europa.eu

References

Kavvadias, K., J.P., J.-N., & Thomassen, G. (2019). Decarbonising the EU heating sector. https://doi.org/10.2760/943257

Decarbonising the EU heating sector. https://doi.org/10.2760/943257

ENTSO-E. An Overview of the European Balancing Market in Europe 2018:1–16.

Bloess A, Schill WP, Zerrahn A. Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials. Appl Energy 2018;212:1611–26. https://doi.org/10.1016/j.apenergy.2017.12.073

Gadd H, Werner S. Daily heat load variations in Swedish district heating systems. Applied Energy 2013;106:47–55. https://doi.org/10.1016/j.apenergy.2013.01.030

Eurostat. (2019). Energy balance flow for European Union (28 countries) 2017. 2019. https://ec.europa.eu/eurostat/web/products-datasets/-/nrg_sankey.

Wang J, You S, Zong Y, Cai H, Træholt C, Dong ZY. Investigation of real-time flexibility of combined heat and power plants in district heating applications. Applied Energy 2019;237:196–209. https://doi.org/10.1016/j.apenergy.2019.01.01

Haakana J, Tikka V, Lassila J, Partanen J. Methodology to analyze combined heat and power plant operation considering electricity reserve market opportunities. Energy 2017;127:408–18. https://doi.org/10.1016/j.energy.2017.03.134.

Zhou Y, Hu W, Mi Y, Dai Y. Integrated Power and Heat Dispatch Considering Available Reserve of Combined Heat and Power Units. IEEE Trans Sustain Energy 2019;10:1300–10.

Turk A, Wu Q, Zhang M, Østergaard J. Day-ahead stochastic scheduling of integrated multi-energy system for flexibility synergy and uncertainty balancing. Energy 2020;196:117130. https://doi.org/10.1016/j.energy.2020.117130.

Kumbartzky N, Schacht M, Schulz K, Werners B. Optimal operation of a CHP plant participating in the German electricity balancing and day-ahead spot market. Eur J Oper Res 2017;261:390–404. https://doi.org/10.1016/j.ejor.2017.02.006.

Tan J, Wu Q, Hu Q, Wei W, Liu F. Adaptive robust energy and reserve co-optimization of integrated electricity and heating system considering wind uncertainty. Applied Energy 2020;260:114230. https://doi.org/10.1016/j.apenergy.2019.114230.

Terreros O, Spreitzhofer J, Basciotti D, Schmidt RR, Esterl T, Pober M, et al. Electricity market options for heat pumps in rural district heating networks in Austria. Energy 2020;196. https://doi.org/10.1016/j.energy.2019.116875.

Blanco I, Guericke D, Andersen AN, Madsen H. Operational planning and bidding for district heating systems with uncertain renewable energy production. Energies 2018;11. https://doi.org/10.3390/en11123310.

Meesenburg W, Ommen T, Elmegaard B. Dynamic exergoeconomic analysis of a heat pump system used for ancillary services in an integrated energy system. Energy 2018;152:154–65. https://doi.org/10.1016/j.energy.2018.03.093.

Lund H. Renewable heating strategies and their consequences for storage and grid infrastructures comparing a smart energy systems approach. Energy 2018;151:94–102. https://doi.org/10.1016/j.energy.2018.03.010.

Hedegaard K, Mathiesen BV, Lund H, Heiselberg P. Wind power integration using individual heat pumps - Analysis of different heat storage options. Energy 2012;47:284–93. https://doi.org/10.1016/j.energy.2012.09.030.

Hennessy J, Li H, Wallin F, Thorin E. Flexibility in thermal grids: A review of short-term storage in district heating distribution networks. Energy Procedia 2019;158:2430-4. https://doi.org/10.1016/j.egypro.2019.01.302.

Werner S. International review of district heating and cooling. Energy 2017;137:617-31. https://doi.org/10.1016/j.energy.2017.04.045.

Salpakari J, Mikkola J, Lund PD. Improved flexibility with large-scale variable renewable power in cities through optimal demand side management and power-to-heat conversion. Energy Convers Manag 2016;126:649–61. https://doi.org/10.1016/j.enconman.2016.08.041.

Mikkola J, Lund PD. Modeling flexibility and optimal use of existing power plants with large-scale variable renewable power schemes. Energy 2016;112:364-75. https://doi.org/10.1016/j.energy.2016.06.082.

Commission