

DeStoSimKaFe

DEVELOPMENT & RATING OF TECHNICAL & ORGANIZATIONAL SYSTEM SOLUTIONS FOR COLD DISTRICT HEATING TO SUPPLY HEATING AND COOLING

Lorenz Leppin

AEE – Institute for Sustainable Technologies(AEE INTEC) 8200 Gleisdorf, Feldgasse 19, Austria

Contents

- Basics of cold DHC
- Development of simulation models
 - (1) Energy balance tool
 - (2) Thermohydraulic model
- Use cases of different demonstrators
- Stochastic analysis of different system configurations
- Lessons Learned
- Outlook and future development

AEE INTEC

Basics of cold DHC

Low temperatures:

- Better integration of more renewable heat sources (solar, waste water treatment plants, industrial processes, server farms, etc.)
- Considerably lower losses in piping system
 - Enabling the use of uninsulated pipes
 - Potentially lowering investment costs
- Possibility for free-cooling
- Bi-directional grid topology
 - System easily expandable
 - Customers can be producers AND consumers (prosumers)

Development of simulation models (1) Energy balance tool

- "Quick and dirty" method for preliminary results
- Enabling long term investigation with reasonable computational effort
- Abstract storage/piping model (Energy Bus), calibrated with measured values
- All essential components (HP, PVT-Collectors, etc.) are available

Development of simulation models (2) Thermohydraulic model

- Detailed simulations of overall system
- Piping system modelled distinctively
- Long-term storage modelled in detail (with soil model)

Development of simulation models Validation

80

Mass flow [kg/s] 6 0

20

0

- FGZ Zürich
 - Living Quarter with 5500 Inhabitants
 - Heat Supplied by two data centres (@35°C)
 - Decentralized Heat Pumps
 - Borehole long-term storage
 - Constantly developed and expanded
 - Measurement data used for validation

- Hospital complex
 - Waste Heat from clinical machines and air conditioning
 - Seasonal storage in Borehole fields (3 in succession)
- Long-term simulation
 - Heat supply higher then demand
 - More consumers can be connected

- No external heat sources available
- Instead supply via Solarthermal/PVT collectors
- Investigation on Number of collectors and boreholes
 - Investment cost too high for Cold DHC solution
 - Energetically possible, economically not viable

- Living quarter in city centre with access to conventional HT DH
- DH High Temp: 3rd gen
 - 95-55°C
 - Insulated Steel Pipes (series 2)
- DH Low Temp: 4th gen
 - 55-35°C
 - Insulated Steel Pipes (series 2)
- Cold DH: 5th gen
 - 5-15°C
 - Un-Insulated PE-pipes

- Living quarter in city centre with access to conventional HT DH
- DH High Temp: 3rd gen
 - 95-55°C
 - Insulated Steel Pipes (series 2)
- DH Low Temp: 4th gen
 - 55-35°C
 - Insulated Steel Pipes (series 2)
- Cold DH: 5th gen
 - 5-15°C
 - Un-Insulated PE-pipes

Stochastic approach Setup

- Use of deterministic model in Modde Pro (DoE-tool)
- Experiment plan set by varying factors
 - Renovation rates, climate scenarios, population growth
 - Minimum grid temperatures, waste heat ratio, storage capacities (primary side), solar collectors
 - CO₂-price, electricity price, oil/gas price

Stochastic approach Setup

- Use of deterministic model in Modde Pro (DoE-tool)
- Experiment plan set by varying factors
 - Renovation rates, climate scenarios, population growth
 - Minimum grid temperatures, waste heat ratio, storage capacities (primary side), solar collectors
 - CO₂-price, electricity price, oil/gas price

Stochastic approach Results

AEE INTEC

- 83 different system combinations
- Predefined KPIs used to compare variants
 - SCOP, LCOH, CO_{2eq} , f_{PE} , RER, WHR
- Exemplary: LCOH + CO_{2eq}

Normalized scale ($0 \triangleq$ lowest value, $1 \triangleq$ highest value)

Stochastic approach **Results**

AEE INTEC

Technical parameters predominant Influence of "soft" parameters smaller

MODDE 12:1 - 22:09:2020 09:31:45 (UTC+2)

Results Lessons Learned / Future Development

Take-aways:

- Cold DHC allows for better integration of renewables
- Waste heat source on-site indispensable
 - Need for "waste-heat" awareness, that T<30°C is still usable</p>
- Economic boundary conditions are essential for a successful implementation
- Chicken-egg dilemma for new built areas and grids
- Follow-up, scientific questions:
 - How can model-predictive control contribute to more efficient load management?
 - How big is the energy saving potential with load management on the secondary (consumer) side?
 - How can other renewable sources (waste water, sea water, etc.) be integrated?

Thank you for your attention