

District Heating Integration of a River Water Heat Pump at a CHP Plant in Germany

Feasibility Study and Techno-Economic Evaluation

U. Trabert, I. Best, W. Bergstraesser, O. Kusyy, J. Orozaliev, K. Vajen

University of Kassel, Institute of Thermal Engineering

Status quo of urban district heating systems in Germany

6-7 October 2020

#SESAAU2020

Ulrich Trabert

Integration of a river water heat pump at a CHP plant

6-7 October 2020

Techno-economic evaluation of two concepts

• Simulation of hourly heat production for the years 2024 to 2038 with the software energyPRO

VS

> Minimum dimensioning Concept ()

- River water heat pump: $\dot{Q} = 4.7 \text{ MW}_{\text{th}}$
- Tank storage:

V = 600 m³

Flexibility Concept (II)

• River water heat pump:

$$\dot{Q} = 6.2 \text{ MW}_{\text{th}}$$

- CHP unit: $\dot{Q} = 7.1 \text{ MW}_{\text{th}}$ $P_{\text{el}} = 7.2 \text{ MW}_{\text{el}}$
- Power-to-heat (PtH):

 $\dot{\underline{Q}}$ = 2.2 MW_{th}

• Tank storage:

Backup: Primary district heating network

Mean annual heat pump operation (15-year average)

5

*Monthly 15-year average (2024 to 2038)

Mean* electricity market price and heat load in **July**

6th International Conference on Smart Energy Systems

6-7 October 2020

#SESAAU2020

Ulrich Trabert

*Monthly 15-year average (2024 to 2038)

Concept (*Heat Pump*)

Mean* daily operation in July

Heat pump operates during market price dip caused by solar PV electricity feed-in ٠

6th International Conference on Smart Energy Systems

6-7 October 2020

#SESAAU2020

7

*Monthly 15-year average (2024 to 2038)

Mean^{*} daily operation in **July**

- Heat pump operates during market price dip caused by solar PV electricity feed-in ۲
- More flexibility potential for electricity market with a high thermal output of the heat pump

6th International Conference on Smart Energy Systems

6-7 October 2020

*Monthly 15-year average (2024 to 2038)

Mean* electricity market price and heat load in **October**

6th International Conference on Smart Energy Systems

6-7 October 2020

#SESAAU2020

Ulrich Trabert

9

*Monthly 15-year average (2024 to 2038)

Concept (II) (Heat Pump + CHP unit + PtH + large storage)

Mean^{*} daily operation in **October**

- Heat production is a good flexibility option for the electricity market from April until October ۲
- More flexible production in winter would require further over-dimensioning of components

Economic comparison

- Low LCoH possible with self-generated electricity from CHP plant.
- Flexible heat production in Concept II not cost-efficient yet.

6th International Conference on Smart Energy Systems 6-7

6-7 October 2020

6th International Conference on Smart Energy Systems

6-7 October 2020

#SESAAU2020

Ulrich Trabert

www.solar.uni-kassel.de

solar@uni-kassel.de

14

Summary

- Excellent and transferable opportunity for river water heat pumps at existing CHP plants.
- Heat production is a **good flexibility option** for the electricity sector during summer and transitional periods.
- River water heat pumps can achieve **competitive LCoH** to conventional heat supply by CHP plants when using self-generated electricity.
- Very **flexible electricity tariffs** (i.e. flexible grid charges) required for economic efficiency of flexible systems.

Thank you for your kind attention!

