

Torben Ommen, Stef Boesten and Brian Elmegaard

Economic feasibility of fuel-shift appliances supplied by

gas, electricity and district heating in Denmark



#### Introduction

# Examples of fuel-shift (hybrid) equipment



### Introduction

# Examples of fuel-shift (hybrid) equipment









4

#### Introductior

# Possible supply schemes



#### Introduction

# **Possible supply schemes**



### Introduction

# State of the art

Existing literature on the topic is very limited, although the concept is established and components exist.

Sector-coupling and thermal storage is a key part of smart energy systems [Lund et al. 2014].

Some link to Active Demand Response, where electric grids use the thermal inertia of heating networks [Patteeuw et al. 2015]. But focused on links to the electricity sector.

- + High shares of intermittent production may provide high price volatility
- Until 2040, the various sectors will be increasingly coupled (e.g. GW capacity heat pumps in DH)

+/- ...

#### Introduction

# Aim and Research questions

Preliminary assessment to be conducted, with the aim to clarify the options and technologies which are relevant for fuel-shift in a Danish context

- How can fuel-shift technologies, which are able to create flexibility between different energy carriers at consumer side, achieve feasible business cases considering both private and socio-economic criteria?
- How significant are the economic and environmental impact of fuel-shifting between energy carriers for common household appliances?

### Methods

# Socio and/or private economic feasibility?

| Investment year  | 2020      | 2030      | Best     |
|------------------|-----------|-----------|----------|
| Operation        | 2020-2029 | 2030-2039 |          |
| Socio-economic   | A         | С         | max(A,C) |
| Private-economic | В         | D         | max(B,D) |

- Feasible installations are characterised by improvements of variable cost during the technical lifetime (period of 10 years), to exceed additional cost of installation and maintenance.
- "Additional fixed cost (AFC)" represents marginal investment and maintenance of equipment.

#### Methods

# Elements of private economic consumer cost (2017)





#### Method

# Evaluated cases for fuel shift

T.

| Case | Description                                        |
|------|----------------------------------------------------|
| 1    | Evening peak hours (from 18:00 to 20:00 - 1 kWh/h) |
| 2    | Night (from 00:00 to 06:00 - 0.33 kWh/h)           |
| 3    | Morning peak hours (from 07:00 to 09:00 - 1 kWh/h) |
| 4    | Consecutive hours with biggest benefit (1 kWh/h)   |
| HP1  | As Case # 1 with HP                                |
| HP2  | As Case # 2 with HP                                |
| HP3  | As Case # 3 with HP                                |
| HP4  | As Case # 4 with HP                                |

In case of heat pumps:

Electricity COP = 3 Heat COP = 1.5 N.gas COP = 2.5



#### Results

# Example of fuel shift between electricity and district heating

Fuel shift assuming hourly consumer cost for electricity and district heating



#### Results

Example of fuel shift between electricity and district heating (2020)

| Case | Description                                        | Fuel-shift                   | Fuel-shift           |
|------|----------------------------------------------------|------------------------------|----------------------|
|      |                                                    | $DH \rightarrow Electricity$ | $Electricity \to DH$ |
|      |                                                    | 2017-DKK                     | 2017-DKK             |
| 1    | Evening peak hours (from 18:00 to 20:00 - 1 kWh/h) | 0                            | 371                  |
| 2    | Night (from 00:00 to 06:00 - 0.33 kWh/h)           | 4                            | 256                  |
| 3    | Morning peak hours (from 07:00 to 09:00 - 1 kWh/h) | 1                            | 344                  |
| 4    | Consecutive hours with biggest benefit (1 kWh/h)   | 7                            | 447                  |
| HP1  | As Case # 1 with HP                                | 191                          | 525                  |
| HP2  | As Case # 2 with HP                                | 242                          | 415                  |
| HP3  | As Case # 3 with HP                                | 189                          | 495                  |
| HP4  | As Case # 4 with HP                                | 282                          | 584                  |

#### Results

# Outline of feasible fuel-shift options

|                |        |         | Case # |   |   |   |                 |          |          |                   |
|----------------|--------|---------|--------|---|---|---|-----------------|----------|----------|-------------------|
|                | ref.   | fuel-s. | 1      | 2 | 3 | 4 | 1 <sup>HP</sup> | $2^{HP}$ | $3^{HP}$ | $4^{\mathrm{HP}}$ |
| Socio-economic | Elec.  | DH      | В      | В | В | В | В               | В        | В        | В                 |
|                | N. gas | DH      | А      | В | В | В | В               | В        | В        | В                 |
|                | DH     | Elec.   | А      | А | А | В | В               | В        | В        | В                 |
|                | N. gas | Elec.   | А      | А | А | А | А               | А        | А        | А                 |
|                | DH     | N. gas  | А      | Α | А | В | В               | В        | В        | В                 |
|                | Elec.  | N. gas  | В      | В | В | В | В               | В        | В        | В                 |
|                |        |         |        |   |   |   |                 |          |          |                   |
| Private-econ.  | Elec.  | DH      | С      | С | С | С | С               | С        | С        | С                 |
|                | N. gas | DH      | В      | A | В | В | В               | В        | В        | В                 |
|                | DH     | Elec.   | А      | A | А | А | А               | А        | А        | А                 |
|                | N. gas | Elec.   | A      | А | А | А | А               | А        | А        | A                 |
|                | DH     | N. gas  | А      | Α | А | А | В               | В        | В        | В                 |
|                | Elec.  | N. gas  | С      | С | С | С | С               | С        | С        | D                 |

- A  $\ AFC < 1000 \ DKK$
- B 1000 DKK  $\leq$  AFC < 5000 DKK

- C 5000 DKK  $\leq$  AFC < 10000 DKK
- D 10000 DKK  $\leq$  AFC

#### Results

# Outline of feasible fuel-shift options



- A  $\ AFC < 1000 \ DKK$
- B 1000 DKK  $\leq$  AFC < 5000 DKK

C 5000 DKK  $\leq$  AFC < 10000 DKK D 10000 DKK < AFC

#### Results

# Outline of feasible fuel-shift options



- A AFC < 1000 DKK
- B 1000 DKK  $\leq$  AFC < 5000 DKK

C 5000 DKK  $\leq$  AFC < 10000 DKK D 10000 DKK < AFC



# Summary

# Summary

- Onlý one combination of fuel-shift pairs and operational cases revealed a benefit large enough to allow AFC of 10000 2017-DKK for the private consumer. No Socio-economic case exceeds 5000 2017-DKK.
- A range of solutions (FS electricity -> DH or N. gas) allow AFC of between 5000 2017-DKK to 10000 2017-DKK. Fuel shift to electricity can only allow AFC of less than 1000 2017-DKK.
- Development in cost does not significantly off-set the feasibility of the fuel-shift technologies.
- Generally, the business case for fuel shift equipment is dependent on the tax of different utilities.
- Fuel-shift equipment will allow trade-off between cost and emissions. In the paper up to 8 % reduction in emissions are shown, or up to 12 % reduction of cost. Some of these reductions could be achieved by better operation of traditional equipment.

# References

# 

Danish Energy Agency.

Samfundsøkonomiske beregningsforudsætninger for energipriser og emissioner.

https://ens.dk/sites/ens.dk/files/Analyser/samfundsoekonomiske beregningsforudsaetninger 2017.pdf. 2017. Accessed: 2019-03-26.

#### Ea Energianalyse.

Samfundsøkonomiske varmepriser i hovedstadsområdet (commisioned work).

https://www.veks.dk/da/service/samfundsoekonomi, 2017. Accessed: 2019-03-26.

# 

#### Markeds data portal - historiske elpriser DK2.

http://osp.energinet.dk/\_lavouts/Markedsdata/framework/integrations/markedsdatatemplate.aspx, 2017a. Accessed: 2019-03-26.



#### Energinet.dk

Energinet.dk

Daily balancing gas price.

http://online.energinet.dk/data/Pages/Public-download.aspx.2017b. Accessed: 2019-03-26



#### HOFOR

Prisen på fiernvarme 2017 for privatkunder, hovedstadsområdets forsvningsselskab.

https://www.hofor.dk/privat/priser-paa-forsyninger-privatkunder/priser-paa-fjernvarme-2017-privatkunder/, 2017 Accessed: 2019-03-26