Investigation of strategy for low-temperature operation of radiator system, by using data from existing digital heat cost allocators, in a multi-family apartment building

Theofanis Benakopoulos ^{a,b,c}, Ph.D. Student

^a Technical University of Denmark, Department of Civil Engineering
^b VITO NV, Energy Technology Unit, Mol, Belgium
^c EnergyVille, Genk, Belgium

Powered by **ENDERGY CLUSTER SEEnergies**Innovation Fund Denmark **Innovation Fund Denmark Innovation Fund Denmark**

Background

AALBORG UNIVERSITY DENMARK

re

Potential for quick and cheap implementation of Low Temperature District Heating ٠ by improving the operation of heating systems in buildings

kamstrup

GRØN ENERGI

Heating system operating temperature 60 30 50 25 Temperature [C°] 40 20 Energy [MWh] 15 30 20 10 10 5 0 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 0 5 6 7 8 9 10 11 12 -2 -1 1 3 4 Outdoor temperature [C°] Energy --Tr Ts = Powered by sEEnergies Innovation Fund Denmark

Den Europæiske Fon

Vi investerer i din fremtid

- Potential reduction of supply temperature: 26 °C
- Potential reduction of return temperature: 11 °C

Orsted

LOGST

Aim

Investigation of a strategy to lower the operating temperatures of radiators:

- by stimulating the use of all radiators with a minimum supply temperature used
- by securing the correct function of all radiators
- problems or inefficient use of radiators can be located by using data from existing electronic heat cost allocators
- these data can be made available as part of a service package for addressing all the problems in the system

Case study description and data collection

- Multi-family apartment building from 1970, located in Viborg, Denmark
- 42 apartments with 235 radiators on three floors
- Electronic heat cost allocators on each radiator
- TRVs with pre-setting and pressure balancing valves in each riser
- Registered reference heat output of the radiator system at 90/70/20 °C: 296 kW

Daily average part-load operation during 2018

Electronic heat cost allocators

- Devices mounted in each radiator
- Cost allocation of the total energy used for heating to the different flats
- Mandatory use since 2020 according to EU ٠ directive
- Remotely readable (data saved in online ٠ databases)
- Registration of the individual radiator size and ٠ heat capacity based on a reference temperature set

Den Europæiske Fond

PINVEST

Use of heat cost allocators to detect the actual number of radiators in use

- They can indicate if radiators are in use or not
- Calculation of actual heat output and part-load operation of each radiator (90/70/20 °C)
- Data downloaded for the two-day period: 12 & 13/2/2020 (outdoor temp: 3 °C)
- The part-load operation of the system was 20 % (data from energy meter)
- 30% of the radiators were not in use in the two days

Use of heat cost allocators to detect the actual number of used radiators

- The radiators are not operating in an even way (different individual part-load operation)
- Several radiators were turned down during the night-time

Use of heat cost allocators to detect the actual number of used radiators

• Only two of the six radiators are used with high part-load

Calculation of minimum supply temperature to stimulate the use of all radiators

- Thermal/hydraulic model of the radiator system was created
- *Model inputs*: radiator heat output, supply temperature
- *Model outputs*: return temperature, system mass flow, system pressure drop
- The minimum supply temperature is selected based on the maximum mass flow rate of the existing pump

Minimum supply temperature to stimulate the use of all radiators

Investigation of hydraulic balancing problems

- ✓ Hydraulic balance under minimum supply temperature
- ✓ The required heat for the flat is delivered only if all the radiators are used
- ✓ If only few of the radiators are used, the delivered heat is not sufficient for the flat

Conclusions

• The model analysis shows that this strategy can work

- Electronic heat cost allocators can be used continuously as a tool to monitor the radiators
- The existing hydraulic balancing in the system make this strategy a robust solution
- This strategy will be tested in the actual heating system this heating season

