

Feasibility study on solar thermal process heat in the beverage industry

6th International Conference on Smart Energy Systems 6-7 October 2020 #SESAAU2020

Adrian Winkelmann, Abdulraheem Salaymeh, Prof. Dr.-Ing. **Stefan Holler**, 6.-7. October 2020

Content

- Background and objectives of solar thermal process heat and integration into district heating systems
- Data analysis of a industrial site in Germany
- Technical and economic results of a feasibility study

Protarget AG

Concentrated solar power (CSP)

provides solar process heat for different applications

- mining,
- food and **beverage**,
- pulp and paper,
- manufacturing and
- chemical production

Objectives

- To what extend can a solar thermal steam system replace the fossil fuelled steam production?
- What are the operating parameters and dimensions of a solar field?

Initial situation

- Steam demand is almost constant over the year
- 12% are covered by fossil fuel which should be replaced

Daily load curve of steam demand

- Load profile corresponds to solar radiation
- High demand during the day

Dimensioning solar thermal steam production

Solar steam production is dimensioned for base load coverage during summer days

Result:

basic steam load: 2.500 kg/h

Steam load profile at winter and summer day

Results of technical layout

Solar system specification

Specific solar radiation: DNI 919 kWh/m²a

Efficiency of CSP collector: 47%

Nominal mirror area: 3.360 m² (12 rows)

Solar field: ca. 12.000 m² (114m x 106m)

Performance data

Specific thermal output: 430 kWh/m²a

Steam production: 2,5 t/h

(8 bar, 180 °C)

Annual steam production 1.420 MWh/a

(steam mass: 2081 t/a)

Reference projects for solar thermal steam production

7

Results of economic analysis

1,5 MW solar steam system
Steam output 2.081 t/a (1.420 MWh/a)

Specific Investment 800-900 EUR/kW

Solar steam system is profitable against conventional steam system

Reference data for biomass and oil:

Hansen, K. (2019): Decision-making based on energy costs: Comparing levelized cost of energy and energy system costs. Energy Strategy Reviews, 24, https://doi.org/10.1016/j.esr.2019.02.003.

Levelized Cost of Energy (LCOE) and fuel costs of solar steam boiler compared to conventional boiler

Summary

- Solar thermal process heat is proven technology.
- Combination of concentrated solar power and biomass steam boiler allow for CO₂-free steam production.
- Solar thermal steam production with CSP can be economic at central European sites.
- Financial support helps to accelerate technological innovations and market integration.

Contact

Prof. Dr.- Ing. Stefan Holler

HAWK Faculty of Resource Management Büsgenweg 1a 37077 Göttingen, Germany

E-Mail: stefan.holler@hawk.de

HAWK HOCHSCHULE FÜR ANGEWANDTE WISSENSCHAFT UND KUNST
Hildesheim/Holzminden/Göttingen
University of Applied Sciences and Arts