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Distributed heat 
pumps in district 
heating and 
cooling systems
• Fifth generation district heating 

and cooling systems have 
network fluid temperatures 
close to ambient (Bünning et al., 
2018)

• Potential for large carbon 
emissions savings (Rogers et al., 
2019)

• Combining diversified building 
profiles thermal profiles can 
increase energy and exergy 
efficiency (Zarin Pass et al., 
2018)

figure: Boesten et al. (2019)
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Research question
• What is the potential costs and emissions savings of bi-

directional, two-pipe, fifth generation district heating and 
cooling networks, applied in an urban area?
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Modeling framework

• Mixed integer linear 
programming (MILP)

• Optimization of multi-
energy systems (MES)

• Energyhub approach
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min
𝒙𝒙,𝒚𝒚

𝒄𝒄𝑻𝑻𝒙𝒙 + 𝒅𝒅𝑻𝑻𝒚𝒚

subject to

𝑨𝑨𝒙𝒙 + 𝑩𝑩𝒚𝒚 = 𝒃𝒃

𝒙𝒙 ≥ 𝟎𝟎 ∈ ℝ𝑵𝑵,𝒚𝒚 ∈ ℕ𝑴𝑴

Modeling framework
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Input Data
• Weather 

conditions
• Energy demands
• Energy prices
• Carbon rates
• Technology cost 

and performance
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Modeling framework
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Modeling framework
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Modeling framework
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min
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Decision var.
• Tech. selection and 

size
• Scheduling (on/off)
• Operation: 

conversion/storage
• Import/Export

Objective funct.

• Total annual cost
• Total annual 

emissions

𝜀𝜀-constraint method

Constraints

• Technology 
behavior

• Energy balances

Input Data
• Weather 

conditions
• Energy demands
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Heat pump model
• Data collection:

• Manufacturer datasheets

• brine-water and water-water heat pumps

• 100 kW < Heating output < 1600 kW

• Heat pumps included:

• Trane RTWF series

• Trane RTWD series

• Viessman Vitocal series

• Trane RTSF series

• Trane CGWN series

• 114 models, 262 datapoints
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Performance
• 𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑎𝑎0 + 𝑎𝑎1 ∗ 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑎𝑎2 ∗ 𝑆𝑆

• 𝑆𝑆 heat pump design size

• 𝐶𝐶𝑡𝑡 = 𝐶𝐶𝐶𝐶𝐶𝐶 ∗ 𝐹𝐹𝑡𝑡
• α𝑆𝑆 ∗ 𝑥𝑥𝑡𝑡 ≤ 𝐹𝐹𝑡𝑡 ≤ β𝑆𝑆 ∗ 𝑥𝑥𝑡𝑡
• 𝐹𝐹𝑡𝑡 electricity input

• 𝑥𝑥𝑡𝑡 heat pump on/off status

• However, 𝑆𝑆 ∗ 𝐹𝐹𝑡𝑡 not allowed in MILP 
formulation, both design variables

• MSE 0.0976  0.0990

20 25 30 35 40 45 50 55 60

DT (source-sink)

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

C
O

P

Data, model, thermodynamic approximation

data

thermodynamic model

linear model w/ size

linear model w/o size

Water to water heat pump for district heating –
Stef Boesten 10

Thermodynamic model:
Olympios et al. (2020)

1formulation based on: 
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Operation
• Heating operation

𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑓𝑓(𝑇𝑇ℎ𝑠𝑠𝑡𝑡 − 𝑇𝑇𝑤𝑤𝑤𝑤𝑠𝑠𝑤𝑤)

• Cooling operation

𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑓𝑓(𝑇𝑇𝑤𝑤𝑤𝑤𝑠𝑠𝑤𝑤 − 𝑇𝑇0)
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Energy balance

𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐
𝐶𝐶ℎ𝑠𝑠𝑤𝑤𝑡𝑡

=
𝑇𝑇0 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐
𝑇𝑇𝑤𝑤𝑤𝑤𝑠𝑠𝑤𝑤 − 𝑇𝑇0

heating
𝐶𝐶ℎ𝑠𝑠𝑡𝑡,𝑠𝑠𝑠𝑠𝑡𝑡 = 𝐶𝐶𝑤𝑤𝑤𝑤𝑠𝑠𝑤𝑤,𝑠𝑠𝑠𝑠 + 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐,𝑠𝑠𝑠𝑠𝑡𝑡 + 𝐹𝐹𝑡𝑡

cooling
𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐,𝑠𝑠𝑠𝑠𝑡𝑡 = 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐,𝑠𝑠𝑠𝑠 + 𝐶𝐶𝑤𝑤𝑤𝑤𝑠𝑠𝑤𝑤,𝑠𝑠𝑠𝑠 − 𝐹𝐹𝑡𝑡
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Example operation – energy balance
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Example operation – energy exchange
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Case study
• Post-war Dutch residential neighborhood

• 781 post-war apartments and row houses

• 49 new apartments

• 5000 m2 supermarket and utilities: 8 TJ 
cooling demand

• Technology options

• Connection to ULT backbone (28 °C/14 °C)

• Heat pump, cold and hot thermal storage 
at each node

• Two-pipe network in neighborhood
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Summary
• We presented a networked heat pump model for MILP

• Operating at 

• 100 kW < P < 1600 kW

• 25 K < ∆T < 55 K

• Some variance in dataset remains unexplained

• Heat pump model operates in energy hub

• Simultaneous heating and cooling with cross-consumption

• Future work

• Implementation in real case study
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