

Utrecht University

Water to water heat pump for district heating: modeling for MILP

Stef Boesten, Lukas Weimann, Stefan Dekker, Matteo Gazzani

Presented by: Stef Boesten

Distributed heat pumps in district heating and cooling systems

- Fifth generation district heating and cooling systems have network fluid temperatures close to ambient (Bünning et al., 2018)
- Potential for large carbon emissions savings (Rogers et al., 2019)
- Combining diversified building profiles thermal profiles can increase energy and exergy efficiency (Zarin Pass et al., 2018)

Research question

• What is the **potential costs and emissions savings** of bidirectional, two-pipe, fifth generation district heating and cooling networks, applied in an urban area?

1

Η

- Mixed integer linear programming (MILP)
- Optimization of multienergy systems (MES)
- Energyhub approach

Utrecht University

₿

Modeling framework

min <i>x,y</i>	$(c^T x +$	$d^T y$
-------------------	------------	---------

subject to

Ax + By = b

 $x \ge \mathbf{0} \in \mathbb{R}^N$, $y \in \mathbb{N}^M$

				1
			r, i	
	<u> </u>	-	6	664

- Weather conditions
- Energy demands
- Energy prices
- Carbon rates
- Technology cost
 - and performance

$\min_{\boldsymbol{x},\boldsymbol{y}} (\boldsymbol{c})$	^T x -	$+ d^{T}$	y)
---	------------------	-----------	------------

$\min_{x,y} (c^{-}x + a^{-}y)$	Input Data	Decision var.
subject to $Ax + By = b$	 Weather conditions Energy demands Energy prices Carbon rates Technology cost 	 Tech. selection and size Scheduling (on/off) Operation: conversion/storage Import/Export
$x \geq 0 \in \mathbb{R}^N$, $y \in \mathbb{N}^M$	and performance	

٠

 $\min_{x,y} \left(c^T x + d^T y \right)$

. .

subject to	Energy demands Scheduling (on/off) Technology
Ax + By = b	 Energy prices Carbon rates Technology cost Operation: conversion/storage Energy balances
$x \geq 0 \in \mathbb{R}^N$, $y \in \mathbb{N}^M$	and performance

٠

Input Data

Weather

conditions

Decision var.

Tech. selection and

Gabrieiti et al. Appl. Energy 2018 (219) & Appl. Energy 2018 (221)

5

7

Constraints

$\min_{x,y} \left(c^T x + d^T y \right)$	Input Data	Decision var.	Constraints	Objective funct.
subject to Ax + By = b $x \ge 0 \in \mathbb{R}^N, y \in \mathbb{N}^M$	 Weather conditions Energy demands Energy prices Carbon rates Technology cost and performance 	 Tech. selection and size Scheduling (on/off) Operation: conversion/storage Import/Export 	 Technology behavior Energy balances 	 Total annual cost Total annual emissions ε-constraint method

Gaprieut et al. Appl. Energy 2018 (219) & Appl. Energy 2018 (219)

0

9

Heat pump model

- Data collection:
 - Manufacturer datasheets
 - brine-water and water-water heat pumps
 - 100 kW < Heating output < 1600 kW
- Heat pumps included:
 - Trane RTWF series
 - Trane RTWD series
 - Viessman Vitocal series
 - Trane RTSF series
 - Trane CGWN series
- 114 models, 262 datapoints

Olympics et al. (2020)

 \mathcal{P}

10

Performance

- $COP = a_0 + a_1 * (T_{sink} T_{source}) + a_2 * S$
 - *S* heat pump design size
- $P_t = COP * F_t$
 - $\alpha S * x_t \leq F_t \leq \beta S * x_t$
 - *F_t* electricity input
 - *x_t* heat pump on/off status
- However, $S * F_t$ not allowed in MILP formulation, both design variables
- MSE 0.0976 → 0.0990

Building

 T_{hot}

 T_0

Operation electricity Heating operation T_{warm} Network ΗP $COP = f(T_{hot} - T_{warm})$ T_{cool}

Cooling operation ٠

$$COP = f(T_{warm} - T_0)$$

Energy balance

$$\frac{P_{cooling}}{P_{heat}} = \frac{T_0 - T_{cool}}{T_{warm} - T_0}$$

heating

$$P_{hot,out} = P_{warm,in} + P_{cool,out} + F_t$$

cooling

$$P_{cooling,out} = P_{cool,in} + P_{warm,in} - F_t$$

electricity *hot*_{out} warm_{in} Network Building ΗP cool_{out} return electricity warm_{out} return Building Vetwoi ΗP cooling_{out} cool_{in} 5 Water to water heat pump for district heating -13 Stef Boesten

0

Example operation – energy balance

Example operation – energy exchange

Case study

- Post-war Dutch residential neighborhood
 - 781 post-war apartments and row houses
 - 49 new apartments
 - 5000 m² supermarket and utilities: 8 TJ cooling demand
- Technology options
 - Connection to ULT backbone (28 °C/14 °C)
 - Heat pump, cold and hot thermal storage at each node
 - Two-pipe network in neighborhood

17

Summary

- We presented a networked heat pump model for MILP
 - Operating at
 - 100 kW < P < 1600 kW
 - 25 K < ΔT < 55 K
 - Some variance in dataset remains unexplained
- Heat pump model operates in energy hub
 - Simultaneous heating and cooling with cross-consumption
- Future work
 - Implementation in real case study

References

- Arias, J., & Lundqvist, P. (2006). Heat recovery and floating condensing in supermarkets. Energy and Buildings, 38(2), 73-81. https://doi.org/10.1016/j.enbuild.2005.05.003
- Boesten, S., Ivens, W., Dekker, S. C., & Eijdems, H. (2019). 5th generation district heating and cooling systems as a solution for renewable urban thermal energy supply. Advances in Geosciences, 49, 129–136. https://doi.org/10.5194/adgeo-49-129-2019
- Bünning, F., Wetter, M., Fuchs, M., & Müller, D. (2018). Bidirectional low temperature district energy systems with agent-based control: Performance comparison and
 operation optimization. Applied Energy, 502–515. https://doi.org/10.1016/j.apenergy.2017.10.072
- Gabrielli, P., Gazzani, M., Martelli, E., & Mazzotti, M. (2017). A MILP model for the design of multi-energy systems with long-term energy storage. Computer Aided Chemical Engineering, 40, 2437–2442. https://doi.org/10.1016/B978-0-444-63965-3.50408-6
- Lyden, A., & Tuohy, P. (2019). A methodology for designing decentralised energy systems with predictive control for heat pumps and thermal storage. E3S Web of Conferences, 111(2019). https://doi.org/10.1051/e3sconf/201911106014
- Olympios, A. V, Hoseinpoori, P., Mersch, M., Pantaleo, A. M., Simpson, M., Sapin, P., ... Markides, C. N. (2020). Optimal design of low-temperature heat-pumping technologies and implications to the whole- energy system. PROCEEDINGS OF ECOS 2020 - THE 33RD INTERNATIONAL CONFERENCE ON Proceedings of ECOS 2020 - the 33rd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems June 29-July 3, 2020, Osaka, Japan, (June), 1–12.
- Rogers, R., Lakhian, V., Lightstone, M., & Cotton, J. S. (2019). Modeling of Low Temperature Thermal Networks Using Historical Building Data from District Energy Systems. Proceedings of the 13th International Modelica Conference, Regensburg, Germany, March 4–6, 2019, 157, 543–550. https://doi.org/10.3384/ecp19157543
- Zarin Pass, R., Wetter, M., & Piette, M. A. (2018). A thermodynamic analysis of a novel bidirectional district heating and cooling network. *Energy*, 144, 20–30. https://doi.org/10.1016/j.energy.2017.11.122
- Zühlsdorf, B., Christiansen, A. R., Holm, F. M., Funder-Kristensen, T., & Elmegaard, B. (2018). Analysis of possibilities to utilize excess heat of supermarkets as heat source for district heating. *Energy Procedia*, 149, 276–285. https://doi.org/10.1016/j.egypro.2018.08.192

