

Towards net-zero emission and energy resilient communities: a multi-dimensional approach to energy master planning

Saeid Charani Shandiz, Dr Behzad Rismanchi, Prof Greg Foliente

🖄 Saeid.charani@unimelb.edu.au

INVES1

kamstrup LOGSTOR Orsted Forsyning

We are developing a computer tool which offers a multi-dimensional approach to the planning, design and assessment of resilient net-zero emission communities

We are spewing 152 million tons of manmade global warming pollution into the thin shell of our atmosphere every 24 hours — as if it were an open sewer.

Ref: climate reality training 2020 Photo © Peter Weber/Shutterstock

Canberra, Australia

January 5, 2020

Canberra set a new, all-time high temperature record of 44° C on January 4.

1.11

÷

Ref: climate reality training 2020 Photo © 2020 AAP Image/Lukas Coch

Resilient net-zero emission communities are needed

5

A multi-dimensional approach to energy master planning of net-zero emission communities is required, especially focusing on the energy resilience of community level energy systems

What is Energy Master Planning?

Photo by Nguyen Thu Hoai on Unsplash

Energy Master Planning

Ref: Charani Shandiz S, Rismanchi B, Foliente G. Energy master planning for net-zero emission communities: state of the art and research challenges. Renew Sust Energ Rev. 2020. (Under review)

What is a community level energy system?

Co-located buildings that own generation units and connected to energy networks

Mixed-use (both electrical and thermal energy)

Single owner/organisation for making decision and investments

A variety of technology options available

Examples are university campuses, school campuses, social housing clusters, group of office buildings, commercial centres, airport buildings, military camps, large hospitals, isolated communities in a remote area and more.

AHA

Photo by Chuttersnap o

THE UNIVERSITY OF MELBOURNE

Community level system and technologies

Methodology

Conceptual design stage

MELBOURNE

Resilience is ability to prepare for, withstand, and recover from disruptions caused by major accidents, attacks, or natural disasters.

"Bounce-back-ability"

Resilience framework and metrics for energy master planning of communities

Saeid Charani Shandiz ^a, Greg Foliente ^a, Behzad Rismanchi ^{a, *}, Amanda Wachtel ^b, Robert F. Jeffers ^b

https://doi.org/10.1016/j.energy.2020.117856

Conceptual multi-phase energy resilience trapezoid

Case study description

The University of Melbourne new campus

Net zero emission by 2050

Sustainable and resilient design

Highest Green Star rating

Fishermans Bend, Melbourne, Australia

Stage 1 of the campus development

Total land area	~7 ha
Gross Floor area	54 987 m²
Peak electricity demand	956 kW
Peak cooling demand	1 327 kW
Peak heating demand	665 kW

14

Alternatives	Electricity gen tech Cooling gen tech		Heating gen tech
Alt0	Grid	Heat pump	Boiler (gas)
Alt1	Wind turbine	Heat pump	Boiler (gas)
Alt2	PV	Heat pump	Solar thermal

THE UNIVERSITY OF MELBOURNE

Preliminary resultsAlt2PVmulti-dimensional performance assessment of design alternatives

Alternative	es Electricit	y gen tech Cooling gen tech	Heating gen tech
Alt0	Grid	Heat pump	Boiler (gas)
Alt1	Wind tur	pine Heat pump	Boiler (gas)
Alt2	PV	Heat pump	Solar thermal

THE UNIVERSITY OF MELBOURNE

Preliminary resultsAlt2PVMulti-dimensional performance assessment of design alternatives

Preliminary results MELBOURNE Multiple alternatives TOPSIS ranking and scores

Neutral

Alt6

Alt4

0.5

Alt1

0.6

0.7

0.8

4

2

0.3

0.4

Alt8 Alt9

Design alternatives

Alternatives	Electricity gen tech	Cooling gen tech	Heating gen tech
BAU	Grid	Heat pump	Boiler (gas)
Alt1	Wind turbine	Heat pump	Boiler (gas)
Alt2	PV	Heat pump	Solar thermal
Alt3	PV	Heat pump	Boiler (electric)
Alt4	Wind turbine	Heat pump	Boiler (electric)
Alt5	Wind turbine	Heat pump	Solar thermal
Alt6	Wind turbine	Heat pump	Boiler (electric)
Alt7	PV	Heat pump	Heat pump
Alt8	PV	Heat pump	Boiler (biomass)
Alt9	PV	Heat pump	Boiler (gas)

6-7 October 2020

#SESAAU2020

Preliminary results Energy resilience evaluation

Alternatives	Electricity gen tech	Cooling gen tech	Heating gen tech
Alt7	PV	Heat pump	Heat pump

Concluding remarks and research implications

- The multi-dimensional approach to energy master planning can facilitate the transition to resilient netzero emission communities.
- Can be of benefit to various stakeholders such as utility providers, energy planners, researchers, facility managers, designers, investors and owners.
- Can provide a multi-dimensional evaluation of design alternatives in a timely manner and in the early stages of energy master planning process.
- Can help uncover investment opportunities and contribute towards more effective sustainable policies.
- Can help assess economic and technical implications of design options for the urban energy grids and wider community, especially in terms of evaluation of primary energy saving, CO₂ emission reduction, flexibility, energy demand management and decreased (power) system vulnerability.

Future work direction

- Developing the preliminary design stage modelling feature in the tool.
- Assessment of energy resilience with a higher resolution.
- Exploring the tool in global case studies.

Relevant references

- Charani Shandiz S, Rismanchi B, Foliente G. Energy master planning for net-zero emission communities: state of the art and research challenges. Renew Sust Energ Rev. 2020. (Under review)
- Charani Shandiz S, Foliente G, Rismanchi B, Wachtel A, Jeffers RF. Resilience framework and metrics for energy master planning of communities. Energy. 2020;203:117856.
- Erba S, Pagliano L, Charani Shandiz S, Pietrobon M. Energy consumption, thermal comfort and load match: study of a monitored nearly Zero Energy Building in Mediterranean climate. IOP Conference Series: Materials Science and Engineering. 2019;609:062026.
- Charani Shandiz, S., Denarie, A., Cassetti, G., Calderoni, M., Frein, A., & Motta, M. (2019). A simplified methodology for existing tertiary buildings' cooling energy need estimation at district level: A feasibility study of a district cooling system in Marrakech. Energies, 12(5).
- L. Wells, B. Rismanchi, and L. Aye, A review of Net Zero Energy Buildings with reflections on the Australian context. Energy and Buildings, 2018. 158: p. 616-628.
- B. Rismanchi, District energy network (DEN), current global status and future development. Renewable & Sustainable Energy Reviews, 2017. 75: p. 571-579.
- Foliente G, Kearns A, Maheepala S, Bai X, Barnett G. Beyond Triple Bottom Line Sustainable Cities RD&D at CSIRO. Procs State of Australian Cities National Conference (SOAC2007), 28-30
 November 2007. 2007(November):28-30.

R

Thank you

Please email me your feedback

<u>saeid.charani@unimelb.edu.au</u> @SaeidCharani

Saeid Charani Shandiz PhD Candidate Renewable Energy and Energy Efficiency Group Department of Infrastructure Engineering | Melbourne School of Engineering

