

0

Case comparison: Low vs *Lower* Temperature District Heating

Oddgeir Gudmundsson, Jan Eric Thorsen, Anders Dyrelund & Ralf-Roman Schmidt

Research questions

• What could be the design structure of the future CO2 neutral district heating supply system?

- How do the economics of different design structures compare?
- How different design structures compare on metrics such as:
 - Energy supply security?
 - Flexibility?
 - Robustness?
 - Reliability?
 - Resilience?

Generations of district heating

Generations of district heating

Danfoss

System boundaries and supply systems considered

Distribution system layout

Main parameters of the distribution system

21 km long

- 11 km of distribution pipes
- 10 km of service pipes
- 618 connections points
 - 1.693 households

Pipeline dimensioning

- Pipes are dimensioned for each type of a supply system
- For each supply system two cases are considered
 - High energy buildings (50 W/m²)
 - Low energy buildings (25 W/m²)

Oddgeir Gudmundsson - 2020

Heat demand

• Space heating demand:

• Estimated based on standard climate weather profiles from EnergyPlus for high and low energy buildings

Domestic hot water demand:

2 MWh/year for all cases considered

• Locations considered:

- Copenhagen, Denmark
- London, United Kingdom

Technological and Economical sources

• Country specific data when possible:

- Heat transfer units and individual heat pumps (Danfoss)
- Investment cost of distribution pipelines (IEA)

• In case of lacking country specific data:

- Danish Energy Agency Technology Catalogues
 - Central heat generation plants
 - Central heat exchanger stations

• Transferring prices between countries:

- Eurostat Purchasing Power Parities (PPP)
- In general Denmark is a high cost country and price adjustments are needed.

Oddgeir Gudmundsson - 2020

Economic results

- High energy buildings in Denmark
- The comparison is based on a levelized cost of heating, all main costs inclusive..
 ... Except the development of the heat source!
- **Denmark** 15 MWh/y space heating and 2 MWh/y DHW demands

How does United Kingdom compare to Denmark?

- High energy buildings
- The comparison is based on a levelized cost of heating, all main costs inclusive..
 ... Except the development of the heat source!

Major differences:

- Primary: Cost of establishing the distribution network \rightarrow From relative share of 20% in DK to 40% in UK
- Secondary: Cost of input energy

United Kingdom

-11,4 MWh/y space heating and 2 MWh/y DHW demands

Comparing economics of different solutions for a heat supply in Denmark and the United Kingdom

- Low energy buildings

- The comparison is based on a levelized cost of heating, all main costs inclusive..
 - ... Except the development of the heat source!

Denmark

- 7,5 MWh/y space heating and 2 MWh/y DHW demands

United Kingdom

- 5,7 MWh/y space heating and 2 MWh/y DHW demands

• Lower heating demand does not particularly influence the results

How do the solutions compare on other metrics?

"One can't predict the weather more than a few days in advance." – Stephen Hawking - We however can prepare for the unexpected!

• Energy supply security

- What if the future develops differently than we expect?
 - Stable cheap renewable power is a luxury for Norwegians
- Flexibility
 - How flexible is the thermal supply to the expected "fuel" input?
 - Even Norway experiences dry summer
- Robustness
 - Is the supply system able to operate in case of unexpected beating?
 - Eventually everything gets kicked
- Reliability
 - How frequently does the thermal supply fail to meet the demands?
 - Anything can fail, but two units failing at the same time?
- Resilience
 - How quickly can the supply system recover from a disruption?
 - Century storms, floods, earthquakes, terror/cyber attacks, ...

How do the solutions compare on other metrics?

"One can't predict the weather more than a few days in advance." – Stephen Hawking - We however can prepare for the unexpected!

• Energy supply security

- What if the future develops differently than we expect?
 - Stable cheap renewable power is a luxury for Norwegians
- Flexibility
 - How flexible is the thermal supply to the expected "fuel" input?
 - Even Norway experiences dry summer
- Robustness
 - Is the supply system able to operate in case of unexpected beating?
 - Eventually everything gets kicked
- Reliability
 - How frequently does the thermal supply fail to meet the demands?
 - Anything can fail, but two units failing at the same time?
- Resilience
 - How quickly can the supply system recover from a disruption?
 - Century storms, floods, earthquakes, terror/cyber attacks, ...

Urban areas: Central heat generated district heating

Source: The District Heating System in Greater Copenhagen Area - in a free power market. Varmelast.dk

Rural areas: Individual heat pumps

Thank you for your attention

Contact information: Dr. Oddgeir Gudmundsson Director, Projects <u>og@danfoss.com</u> Linked in www.linkedin.com/in/oddgeirgudmundsson

14 | Danfoss Heating Segment – A – Projects

Oddgeir Gudmundsson - 2020