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Motivation

DLR.de  •  Chart 2 > Niklas Wulff  •  Ph.D. Presentation 

https://www.eea.europa.eu/data-and-maps/indicators/proportion-of-vehicle-fleet-meeting-4/assessment-4

Target: Generic profiles that estimate the flexibility of an electric fleet of various sizes and 
electricity consumptions



Mobility patterns are different across Europe implying different load shifting 

characteristics of future EV fleets
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Technical assumptions

Battery size: ~30 kWh

Consumption*: 17.7-21.6 kWh / 100 km

Charging availability*: 3.5-60 kW (avrg. 

3.5-17.6 kW / charger)

Higher morning peak for Germany & 
Denmark

Wider evening peak for Finland

Swiss people drive more during midday

Different weekend distance peak amplitudes …

… , times and distributions.
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Modeling pipeline and structure of the talk
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Mobility
surveys
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Modeling pipeline and structure of the talk
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Explanation of the datasets – increased consciousness about personal data 

protection makes analysis more difficult
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Household 
(N=25,922)
102 variables

MiD 2008 (public use file) MiD 2017 (B2 regional dataset)

Vehicles (N=34,601)
53 variables

Person (N=39,722)
124 variables

Trips (N=50,500)
121 variables

Travels (N=36,182)
50 variables

Household 
(N=156,420)
49 variables

Vehicles

Person (N=316,361) 
107 variables

Trips (N=960,619)
157 variables

Travels

Full codeplans available in German from http://www.mobilitaet-in-deutschland.de/pdf/2_MiD2017_Codeplaene.zip



Procedure of cleaning and processing the dataset of the MiD2017
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Trips (N=960,619)
157 variables
17 variables 

Codeplans available in German from http://www.mobilitaet-in-deutschland.de/pdf/2_MiD2017_Codeplaene.zip

Trips by MIV 
(N=525,033)

Start and arrival hour
available (N=484,630)

Start hour <= arrival
hour (N=471,777)

Detailed trip length
available (N=463,045)

No multi-modal trips
(N=405,411)

Filter out implausible 
combinations of triplengths
(N=405,407)

Merge single trips to daily
travel diaries (N=143,699)



The influence of weighting trips is minor compared to the changing mobility 

patterns from 2008 to 2017
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N=143,699 N=17,863



Modeling pipeline and structure of the talk
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Consumption
Grid connection

SOC Max 
SOC Min

Uncontrolled
charging
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Battery

Vehicle Energy in Python (VencoPy) – resulting profiles

Grid

Demand

Controlled charging

SOC Max 
SOC Min



Comparing consumption and uncontrolled charging on the background of 

the data bases MiD2008 vs. MiD2017
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Morning and evening peak of electricity consumption reduced, evening peak
flat. However, this doesn‘t affect evening peak of uncontrolled charging.



Comparing SOC flexibility on the background of the data bases MiD2008 vs. 

MiD2017
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Similar shape of mobility-demand enforcement constaints for the SOC. However, 
SOC Max significantly shifted up. 



Conclusion and outlook
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• Mobility patterns that are widely measured by national travel surveys change implying
methodological challenges for estimating future electric vehicle fleet load shifting potential

• Germans now travel less in the early morning and more during the course of the day. 
Weekend travels are shifted by 1-2 hours to later hours but increased in distance

• For estimated electric vehicle fleet flexibility, these changes imply lower morning and flatter
day consumption of EVs, however evening peaks of uncontrolled charging are not 
affected. Estimations of available battery SOC for load shifting shows higher potential at 
night hours between 9pm and 5am in the morning

Outlook

• We‘re working on validating our estimation methodology with real-world pilot project EV 
mobility, connection and charging data
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Mobility patterns change over time and between fossil fuelled and electrically 

driven vehicles
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MiD2008 MiD2017 EV studies

Average 
Number of
trips in 
1/(cap*d)

3.4 3.1

Average trip
distance
km/(cap*d)

38 39 
61 (UK) vs. 43 (UKNTS) 
[Neaimeh et al. (2017)]

Share of active
days in %

90 85 83



Fleet battery

VencoPy – Estimating an electric vehicle fleets flexibility 

Grid

Hourly electricity production costs

Final energy demand for driving

Interface grid –

vehicle fleet battery

Interface battery –

electric motor

• Pcharge,avail (t)
• Cuncontr (t)
• ηGtV
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• Pdrive (t)

Image source
https://static.thenounproject.com/png/116156-200.png

Electric drive power

Charging (controlled + uncontrolled)

Lmin (t)
Lmax (t)

Technical assumptions for this 
analysis

Battery size: 50 kWh

Consumption: 20.0 kWh / 100 km

Charging availability: 3.7 kW

In the following not differentiating
between weekend and workday



The MiD 2017 dataset
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Meta properties
• Collection period: May 2016 – October 2017
• 316k persons, 156k households, almost 1 Mio. 

trips
• 3 German-wide surveys, 55 local surveys
• How representative is the MiD? Non-response 

study yielded no significant differences between
responders and non-responders
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Comparisons
• The influence of weights (averaged vs. weighted) 

on consumption profiles
• The influence of weekdays (with weights) on 

consumption profiles

Calculation of weights
• Basis for the weights is the household size
• Selection probability and household features

distribution
• For extrapolation, weights have to be multiplied

with additional factor
• Households: 262
• Person: 260
• Trips: 268
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Steps of VencoPy
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1. Trip distance, grid connection profiles and assumption read-in
2. Calculation of estimated individual profiles for vehicle demand side 

flexibility
3. Filtering of individual profiles
4. Aggregation to a fleet level
5. Normalization
6. Plotting and output
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Differentiating independent variables
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Criterium Independent variable Source Arguments

Charging Place Home, work,  shopping etc. Babrowski et al. (2014), 
Corchero et al. (2014)

- Strong influence on load curve characteristic
- Locational influence on charging behaviour

Area type Metropole, urban, rural Babrowski et al. (2014) - Different distribution grid resiliencies

- Different EV penetration rates

Daytype Weekend, weekday Babrowski et al. (2014) - Different mobility patterns

Season Temperature (continuous) Fischer et al. (2018) citing
Lindgren et al. (2016), 
Brown et al. (2018)

- Influence of temperature on vehicle electricity consumption

User group Commuter, part-time
workers, student, pensionist
etc.

Fischer et al. (2019),
Gaete et al. (2020,
forthcoming)

- Charging locations depend on user group and thus charging
characteristic

Car model Battery size, consumption, 
charging rate

Fischer et al. (2019) - Battery size, electric consumption and maximum charging
rates influence charging
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