VEHICLE ENERGY CONSUMPTION IN PYTHON (VENCOPY): PRESENTING AND DEMONSTRATING AN OPEN SOURCE TOOL TO CALCULATE ELECTRIC VEHICLE CHARGING FLEXIBILITY

Knowledge for Tomorrow,

6th Smart Energy Systems Conference Aalborg, 2020/10/05-06

Niklas Wulff & Hans Christian Gils

Motivation

Target: Generic profiles that estimate the flexibility of an electric fleet of various sizes and electricity consumptions

https://www.eea.europa.eu/data-and-maps/indicators/proportion-of-vehicle-fleet-meeting-4/assessment-4

Mobility patterns are different across Europe implying different load shifting characteristics of future EV fleets

Technical assumptions

Battery size: ~30 kWh
Consumption*: 17.7-21.6 kWh / 100 km
Charging availability*: 3.5-60 kW (avrg.
3.5-17.6 kW / charger)

Higher morning peak for Germany & Denmark

Wider evening peak for Finland

Swiss people drive more during midday

Different weekend distance peak amplitudes ...

..., times and distributions.

Modeling pipeline and structure of the talk

Modeling pipeline and structure of the talk

Explanation of the datasets – increased consciousness about personal data protection makes analysis more difficult

MiD 2008 (public use file)

MiD 2017 (B2 regional dataset)

Household (N=25,922) 102 variables	Trips (N=50,500) 121 variables	Household (N=156,420) 49 variables	Trips (N=960,619) 157 variables
Vehicles (N=34,601) 53 variables	Travels (N=36,182) 50 variables	Vehicles	Travels
Person (N=39,722) 124 variables		Person (N=316,361) 107 variables	

Full codeplans available in German from http://www.mobilitaet-in-deutschland.de/pdf/2_MiD2017_Codeplaenc.zip

Procedure of cleaning and processing the dataset of the MiD2017

Codeplans available in German from http://www.mobilitaet-in-deutschland.de/pdf/2_MiD2017_Codeplaenc.zip

The influence of weighting trips is minor compared to the changing mobility patterns from 2008 to 2017

N=143,699 N=17,863

Modeling pipeline and structure of the talk

Vehicle Energy in Python (VencoPy) – resulting profiles

Comparing consumption and uncontrolled charging on the background of the data bases MiD2008 vs. MiD2017

Morning and evening peak of electricity consumption reduced, evening peak flat. However, this doesn't affect evening peak of uncontrolled charging.

Comparing SOC flexibility on the background of the data bases MiD2008 vs. MiD2017

Similar shape of mobility-demand enforcement constaints for the SOC. However, SOC Max significantly shifted up.

Conclusion and outlook

- **Mobility patterns** that are widely measured by national travel surveys **change** implying methodological challenges for estimating future electric vehicle fleet load shifting potential
- Germans now travel less in the early morning and more during the course of the day. Weekend travels are shifted by 1-2 hours to later hours but increased in distance
- For estimated electric vehicle fleet flexibility, these changes imply **lower morning** and **flatter day consumption** of EVs, however **evening peaks of uncontrolled charging are not affected**. Estimations of available battery SOC for load shifting shows higher potential at night hours between 9pm and 5am in the morning

Outlook

• We're working on validating our estimation methodology with real-world pilot project EV mobility, connection and charging data

Background Literature

Follmer, R., Gurschwitz, D. Jesske, B., Quandt, S., Nobis, C. and Köhler, K. (2010). *Mobilität in Deutschland 2008* – Nutzerhandbuch. Online: <u>http://mobilitaet-in-deutschland.de/pdf/MiD2017_Nutzerhandbuch.pdf</u>

Heinz, D. (2018). Erstellung und Auswertung repräsentativer Mobilitäts- und Ladeprofile für Elektrofahrzeuge in Deutschland. In: *Working Paper Series in Production and Energy, 30.* DOI: 10.5445/IR/1000086372

Luca de Tena, D. (2014). Large Scale Renewable Power Integration with Electric Vehicles. Long term analysis for Germany with a renewable based power supply. Dissertation at University of Stuttgart.

Luca de Tena, D. & Pregger, T. (2018). Impact of electric vehicles on a future renewable energy-based power system in Europe with a focus on Germany. *Int J Energy Res. 42*, 2670–2685. doi: 10.1002/er.4056

Neaimeh, M., Salisbury, S.D., Hill, G.A., Blythe, P.T., Scoffield, D.R., Francfort, J.E. (2017). Analysing the usage and evidencing the importance of fast chargers for the adoption of battery electric vehicles. <u>https://doi.org/10.1016/j.enpol.2017.06.033</u>

Nobis, C. & Kuhnimhof, T. (2018). Mobilität in Deutschland – MiD Ergebnisbericht. Studie von infas, DLR, IVT und infas 360 im Auftrag des Bundesministers für Verkehr und digitale Infrastruktur (FE-Nr. 70.904/15). Bonn, Berlin. www.mobilitaet-in-deutschland.de).

Schaeuble, J., Kaschub, T., Ensslen, A., Jochem, P. & Fichtner, W. (2017). Generating electric vehicle load profiles from empirical data of three EV fleets in Southwest Germany. In: *J Clean Prod 150,* 253-266. <u>https://doi.org/10.1016/j.jclepro.2017.02.150</u>

Wulff, N., Steck, F., Gils, H.C., Hoyer-Klick, C., Van den Adel, B. & Anderson, J.A. (2020). Comparing Power-System and User-Oriented Battery Electric Vehicle Charging Representation and Its Implications on Energy System Modeling. In: *Energies, 13*, 1093. doi: 10.3390/en13051093

Mobility patterns change over time and between fossil fuelled and electrically driven vehicles

	MiD2008	MiD2017	EV studies
Average Number of trips in 1/(cap*d)	3.4	3.1	
Average trip distance km/(cap*d)	38	39	61 (UK) vs. 43 (UKNTS) [Neaimeh et al. (2017)]
Share of active days in %	90	85	83

VencoPy – Estimating an electric vehicle fleets flexibility

The MiD 2017 dataset

Meta properties

- Collection period: May 2016 October 2017
- 316k persons, 156k households, almost 1 Mio. trips
- 3 German-wide surveys, 55 local surveys
- How representative is the MiD? Non-response study yielded no significant differences between responders and non-responders

Calculation of weights

- Basis for the weights is the household size
- Selection probability and household features distribution
- For extrapolation, weights have to be multiplied with additional factor
 - Households: 262
 - Person: 260
 - Trips: 268

Comparisons

- The influence of weights (averaged vs. weighted) on consumption profiles
- The influence of weekdays (with weights) on consumption profiles

Steps of VencoPy

- 1. Trip distance, grid connection profiles and assumption read-in
- 2. Calculation of estimated individual profiles for vehicle demand side flexibility
- 3. Filtering of individual profiles
- 4. Aggregation to a fleet level
- 5. Normalization
- 6. Plotting and output

Differentiating independent variables

Criterium	Independent variable	Source	Arguments
Charging Place	Home, work, shopping etc.	Babrowski et al. (2014), Corchero et al. (2014)	 Strong influence on load curve characteristic Locational influence on charging behaviour
Area type	Metropole, urban, rural	Babrowski et al. (2014)	- Different distribution grid resiliencies
			- Different EV penetration rates
Daytype	Weekend, weekday	Babrowski et al. (2014)	- Different mobility patterns
Season	Temperature (continuous)	Fischer et al. (2018) citing Lindgren et al. (2016), Brown et al. (2018)	- Influence of temperature on vehicle electricity consumption
User group	Commuter, part-time workers, student, pensionist etc.	Fischer et al. (2019), Gaete et al. (2020, forthcoming)	 Charging locations depend on user group and thus charging characteristic
Car model	Battery size, consumption, charging rate	Fischer et al. (2019)	 Battery size, electric consumption and maximum charging rates influence charging

