A data-driven approach for fast and accurate dynamic simulation for district heating networks

Mengting Jiang, Camilo Rindt, David Smeulders

Eindhoven University of Technology, Mechanical Engineering Department, Energy Technology Group

Powered by

GRØNENERGI

Vi investerer i din fremti

kamstrup

Orsted

Content

- Background introduction
- Physical model for district heating system simulation
- Neural networks and LSTM algorithm
- Results

Thermal inertia effect in the piping system

Pipe outlet temperature comparison

Pipe: DN50, 100 m

 $\dot{m} = 0.1 \text{ kg/s}$

Thermal Inertia Factor = $\Delta T/T_{ref}$

 ΔT : response time difference

T_{ref:} response time without thermal inertia

Content

- Introduction
- Physical model for district heating system simulation
- Neural networks and LSTM algorithm
- Results and discussion

Physical model for district heating system simulation

$$\frac{\partial T^{c}}{\partial t} = \alpha^{c} \frac{\partial^{2} T^{c}}{\partial x^{2}} + \frac{1}{R_{ic} V_{c} \rho_{c} c_{p_{c}}} (T^{i} - T^{c}) - \frac{1}{R_{cg} V_{c} \rho_{c} c_{p_{c}}} (T^{c} - T^{g})$$

$$\frac{\partial T^{i}}{\partial t} = \alpha^{i} \frac{\partial^{2} T^{i}}{\partial x^{2}} + \frac{1}{R_{si} V_{i} \rho_{i} c_{p_{i}}} (T^{s} - T^{i}) - \frac{1}{R_{ic} V_{i} \rho_{i} c_{p_{i}}} (T^{i} - T^{c})$$

$$\frac{\partial T^{s}}{\partial t} = \alpha^{s} \frac{\partial^{2} T^{s}}{\partial x^{2}} + \frac{1}{R_{ws} V_{s} \rho_{s} c_{p_{s}}} (T^{w} - T^{s}) - \frac{1}{R_{si} V_{s} \rho_{s} c_{p_{s}}} (T^{s} - T^{i})$$

$$\frac{\partial T^{w}}{\partial t} + v \frac{\partial T^{w}}{\partial x} = \alpha^{w} \frac{\partial^{2} T^{w}}{\partial x^{2}} - \frac{1}{R_{ws} V_{w} \rho_{w} c_{p_{w}}} (T^{w} - T^{s})$$

Powered by

Physical model for district heating system simulation

Content

- Introduction
- Physical model for district heating system simulation
- Recurrent neural networks and LSTM algorithm
- Result

RNNs and LSTM algorithm

Recurrent Neural Network (RNN)

Long short-term memory (LSTM)

Oscillations caused by sudden change

Hyperparameter tuning

Vi investerer i din fremtid

Study in progress

- More features need to be captured
- Computationally costly, simpler algorithms need to be tested

Thank you!

Mengting Jiang Email: m.jiang1@tue.nl Gemini zuid 2.120, Eindhoven University of Technology

Vi investerer i din fremtid

kamstrup

