

Emission reduction in 4th generation district heat supply networks

Mathias Kersten

6th International Conference on Smart Energy Systems #SESAAU2020, Aalborg, 6-7 October 2020

Overview

- Motivation
- 2. Workflow of energy system design
- Design and optimization tool
- 4. Current sub-urban energy system
- 5. Case definition and main results
- 6. Summary and outlook

Motivation

M. Kersten | Emission reduction in 4th generation district heat supply networks

Workflow of energy system design

- Based on Open Energy MOdelling Framework (oemof)
- Developed by Reiner Lemoine Institute, originally for electricity sector
- Ongoing development to model more complex systems

Design and optimization tool

- Each component represented by a "node"
- Sources, buses, transformers, storages and sinks
- Balance equations for each "node" and timestep
- Hourly data (demands, potentials)
- Model parameters e.g.:
 specific emissions of fuels
 specific investment cost
 variable feed-in revenues
 variable funding parameters

Current sub-urban energy system

- No heat supply network, heterogeneous building stock
- Supply by individual units mainly using natural gas (approx. 215 g_{CO2}/kWh_{th})
- Mean LCOE approx. 11.5 ct/kWh_{th}
- High renewable potential in model area (availability of biomass will increase in future)

How to design a better or the optimal energy system?

Current sub-urban energy system

Case definition and main results

- Peak load approx. 9 MW_{th}
- Thermal demand approx. 20 GWh_{th}/a
- Grid supply temperature 95°C
- Economic system optimization

<u>Case 1:</u>

- no additional constraints
- only economic optimization

<u>Case 2:</u>

- fulfill federal funding requirements
- desired share of renewables approx. 90%

<u>Case 3:</u>

- high emission reduction
- max. annual emission approx. 770 t/a

Case definition and main results

Case 1 – economic optimization:

- approx. 160 g_{CO2}/kWh_{th}
- 27% reduction
- LCOE approx. 8.6 ct/kWh_{th}

Case 2 - federal funding:

- approx. 75 g_{CO2}/kWh_{th}
- 65% reduction
- LCOE approx. 8.6 ct/kWh_{th} (depending on federal funding program "Heat supply networks 4.0")

Case 3 – high emission reduction:

- approx. 40 g_{CO2}/kWh_{th}
- 83% reduction
- LCOE approx. 9.5 ct/kWh_{th}

Summary and outlook

- Tool to design and optimize smart energy systems (variable requirements)
- Applicable on other (sub-urban) regions
- Easy to handle and scalable

- Further development and automization of optimization tool
- Application for planning and optimizing new and existing systems
- Identification of parameters for future approximate/estimate design

Thank you for your attention

Mathias Kersten mathias.kersten@tu-berlin.de www.hri.tu-berlin.de

Appendix – results

- share of heat production for economic optimization without additional requirements
- approx. 160 g_{CO2}/kWh_{th}
- 27% reduction
- LCOE approx. 8.6 ct/kWh_{th}
- high share of fossil heat, low emission reduction

Appendix – results

- share of heat production for economic optimization to fulfill federal funding requirements
- approx. 75 g_{CO2}/kWh_{th}
- 65% reduction
- LCOE approx. 8.6 ct/kWh_{th} (depending on federal funding program "Heat supply networks 4.0")
- high producer diversity, low share of fossil heat

Appendix – results

- share of heat production for economic optimization to fulfill high emission reduction requirements
- approx. 40 g_{CO2}/kWh_{th}
- 83% reduction
- LCOE approx. 9.5 ct/kWh_{th}
- highest emission reduction, strong dependency on wooden biomass

