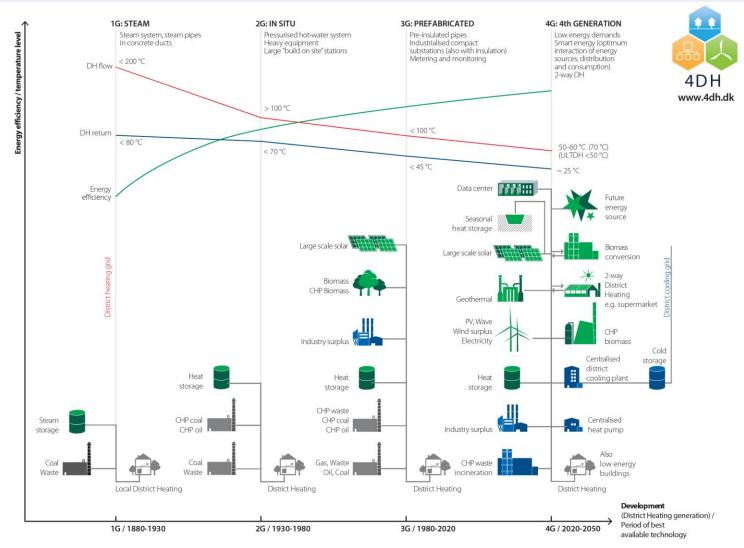


Fault Detection and Optimization Potential on the Demand Side of District Heating Systems

Detection and realisation of optimisation potentials


Jakob Binder, Harald Schrammel, Marnoch Hamilton-Jones

AEE – Institute for Sustainable Technologies (AEE INTEC) Feldgasse 19, 8200 Gleisdorf, Austria

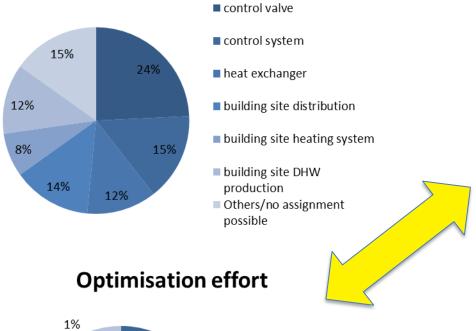
www.aee-intec.at

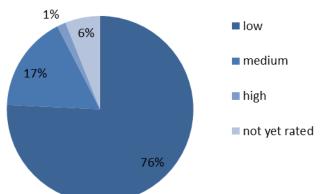
Development of DH generations

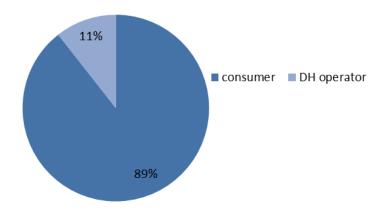
Source: Thorsen, J. E., Lund, H., & Mathiesen, B. V. (2018). "Progression of District Heating – 1st to 4th generation".

Project T2LowEx

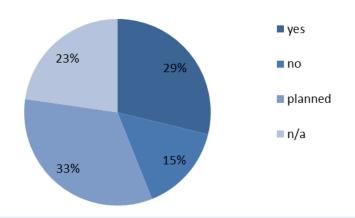
- Transformation: conventional DH ⇒ low-temperature DH
 - Achieved by measures on the consumer side
- Systematic consumer analysis
- Estimation of potentials of the overall DH system
- Development of incentive-based business models
- Demonstration and evaluation of various improvements
- Evaluation of potential effects on the Austrian DH sector




Dieses Projekt wird aus Mitteln des Klima- und Energiefonds gefördert und im Rahmen des Energieforschungsprogramms 2016 durchgeführt.


Reasons for increased return temperatures

Affected component



Responsibility for correction

Measures undertaken

Systematic investigation of optimization potentials

Weighting

energy / volume

reference temperature difference [K]

Meter readings

energy [MWh/a]

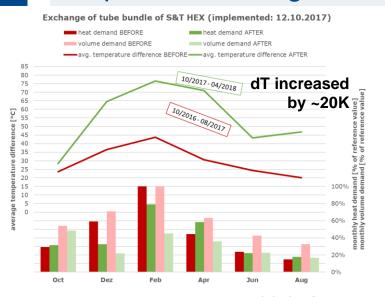
volume [m³/a]

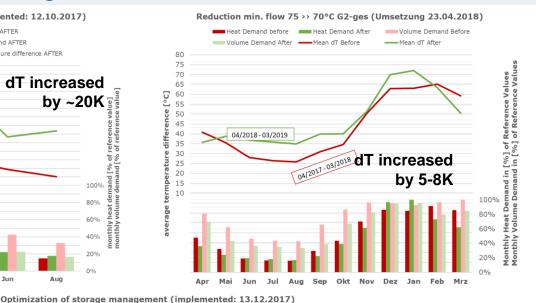
Performance indicators

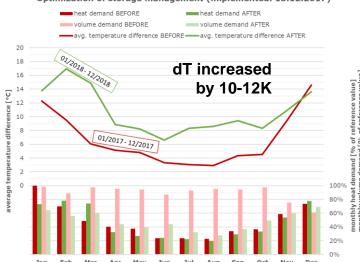
avg. temperature difference [K]

spec. volume flow [m³/MWh]

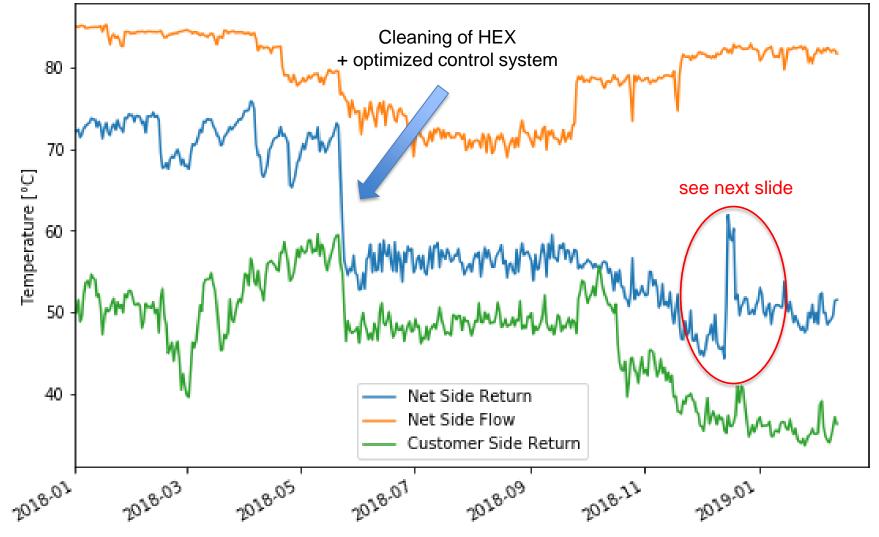
Method 1

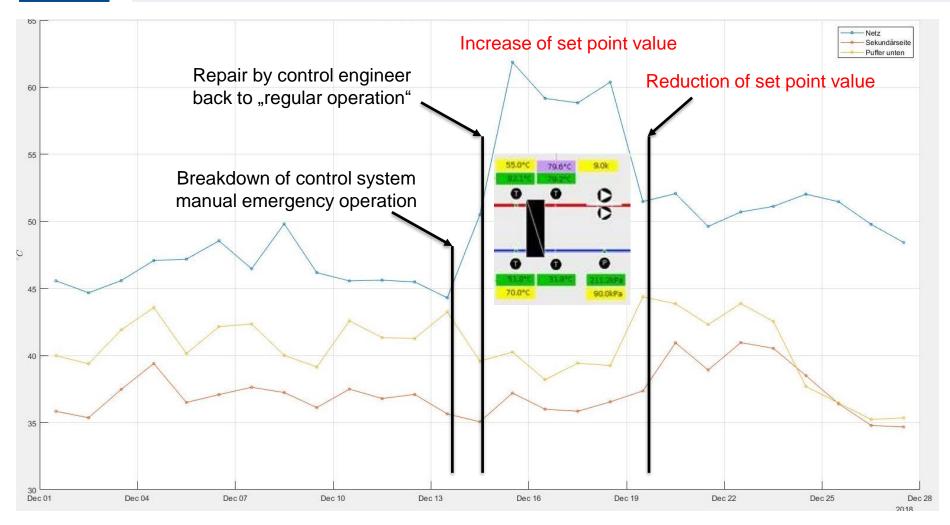

Cmr. Number	Annual Demand [kWh/a]	Annual Flow Volume [m³/a]	Mean ∆T [K]	Specific Volume [m³/MWh]	Weighting by Heat Sales [%]	Optimisation Potential	Rank by Optimisation Potential
37	448,575	48,577	8	108	8.72	945	1
1	885,604	32,304	24	36	17.22	628	2
9	289,018	14,656	17	51	5.62	285	3
40	294,775	14,447	18	49	5.73	281	4
3	293,240	10,679	24	36	5.70	208	5


	Cmr. Number	Annual Demand [kWh/a]	Annual Flow Volume [m³/a]	Mean ΔT [K]	Specific Volume [m³/MWh]	Target ∆T [K]	Reference Volume [m³/a]	Network Ref [K]	Return (if optimised) [K]	Rank by Optimisation Potential
	37	448,575	48,577	8	108	40	9,832	36.8	-8.0	1
	1	885,604	32,304	24	36	40	19,411	31.0	-2.3	2
	9	289,018	14,656	17	51	40	6,335	30.2	-1.4	3
	40	294,775	14,447	18	49	40	6,461	30.1	-1.4	4
	56	136,321	8,217	15	60	40	2,988	29.6	-0.9	5

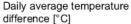

Method 2

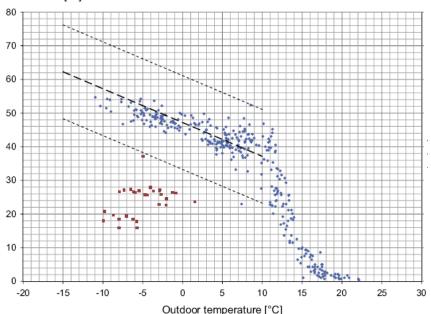
New tubes (shell & tube HEX) Reduced supply temperature Optimized storage control





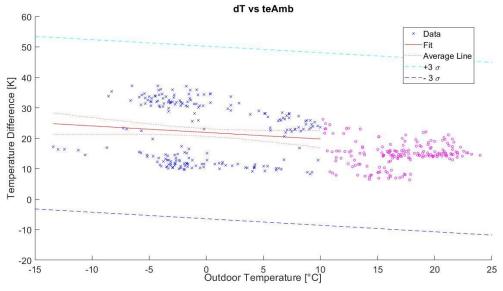
Cleaning of HEX + optimized control system




Optimization is good, continous monitoring is better!

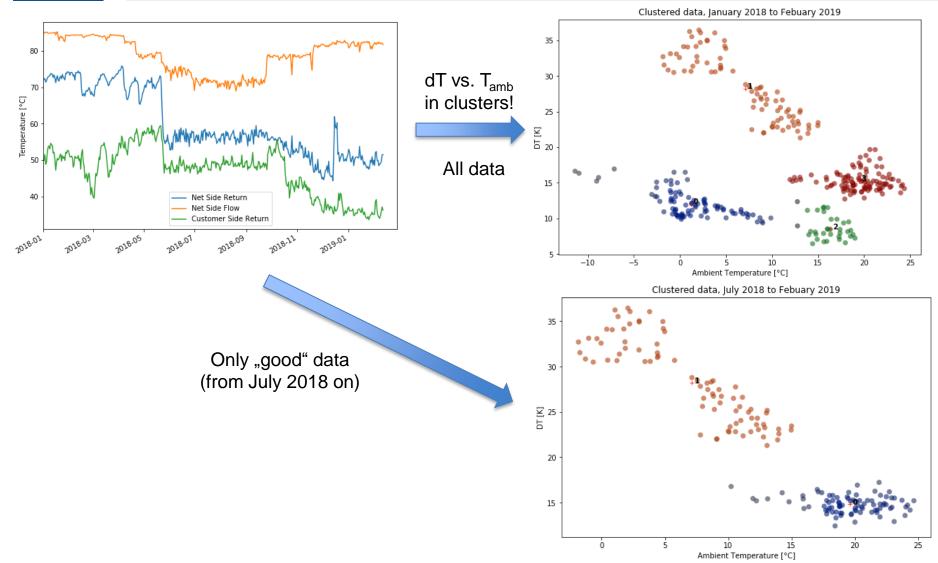
AEE INTEC

Advanced data based methods



Application on consumers within T2LowEx-Project

 Procedure, if malfunctions are already existent? (set point value?)


Gadd/Werner 2014: Achieving low return temperatures from DH heating substations

- Analysis: temperature difference vs. outdoor temperature
- Comparison: upper/lower limits of regular operation (3x standard deviation)

Fault detection with clustering algorithms

Performance and Validation of cluster based method

- Detection of faults after ~10 days
 - Tests of reduction of detection time with moving window inconclusive.
- Qualitative Validation Performed by visual examination of data on random customers from 4 heating networks.
- Most faults detected.
 - False positives significant but not unmanageable, can be reduced by further tuning.

No Fault		Fault	4
Networl	k 1 Network		1 Network 3
Cmr014	'Cmr013'	'Cmr025'	'Cmr047'
'Cmr027	'Cmr042'	'Cmr010'	'Cmr033'
'Cmr015	'Cmr025'	<mark>'Cmr001'</mark>	'Cmr004'
	'Cmr027'	<mark>'Cmr008'</mark>	'Cmr016'
	'Cmr032'	'Cmr028'	'Cmr023'
Network	k 2 Network	4 <u>Networ</u> k	2 Network 4
'cmr39'	'Cmr016'	<mark>'cmr05'</mark>	Cmr006'
'cmr29'	'Cmr010'	<mark>'cmr03'</mark>	Cmr021'
'cmr27'	'Cmr001'	<mark>'cmr02'</mark>	Cmr013'
'cmr27'	'Cmr018'	<mark>'cmr21'</mark>	Cmr025'
'cmr01'	'Cmr005'	'cmr32'	Cmr004'

How to realise optimisations and error corrections?

- Continuous monitoring required
 - Data analysis (manually/automatically, internal/external)
- Supply (sphere of responsibility of DH operator)
 - Check and adapt heating control system regularly
 - Guidelines for consumers with high supply temperature demand
 - Check and adapt heat supply contracts / connection requirements
- Return (frequently within the sphere of responsibility DH consumers)
 - Check and adapt heating control system regularly
 - Operators take responsibility for heat transfer stations and their maintenance
 - Create incentives for consumers (incentive-tariffs, subsidies)
 - Supply from the return line, low-temperature networks
- Requires optimization budget ⇒ estimate by effect of measure
 - Please see presentation by Andreas Müller (TU Vienna)

Thank You for Your Attention