

Using least cost renovation combinations in buildings for developing future heat demand density maps: case studies in three cities in Europe

Marcus Hummel, e-think

Funded by the Horizon 2020 programme of the European Union

Innovation Fund Denmark

Forsyni

GRØN ENERGI

Orsted

- (1) Aim
- (2) Methodology
- (3) Results
- (4) Conclusions and discussion

Section 1 Aim of the analysis

Derive scenarios for future H&C

- Set-up databases of the buildings in the cities containing information of location, gross floor area and heat demand
- Find least cost renovation combinations for the building stock in the cities for reaching different overall saving targets
- Create several heat demand density maps per city for further analysis of the potentials for district heating

Section 2 Methodology

Approach (for each city)

Approach (for each city)

Section 3 **Results**

Differences in the building stocks

Figure: Distribution of gross floor areas of buildings in the different types and construction periods within the three case study cities

Costs for heat savings

Heat demand density maps

Figure: Heat demand density maps for current situation and for different renovation states for the city of Frankfurt

Section 4

Conclusions and discussion

Conclusions and discussion

Costs for savings

- Remarkable differences in the costs for savings in the different cities up to around 35% savings of overall heat demand
- To save more heat the costs increase rapidly in all cities

Overall approach

- Method is working and is suitable to derive geographically explicit renovation scenarios
- Resulting data and maps are useful for analysing future potentials for district heating
- Uncertainty due to missing information on the current status of renovation of the existing buildings
 - Data on the status was not available in any of the cities \rightarrow an average status is included for each of the building types and construction periods
 - Remarkable difference in the costs per saving in the buildings [EUR/MWh] between the case it is renovated and it is not renovated

Further uncertainties

- Missing entries / values in the building databases of the cities
- If building is not occupied, renovation does not lead to savings
- New construction currently reflected as increase in gross floor area on the existing buildings
- Suitability of renovation measures and costs in the concrete buildings

