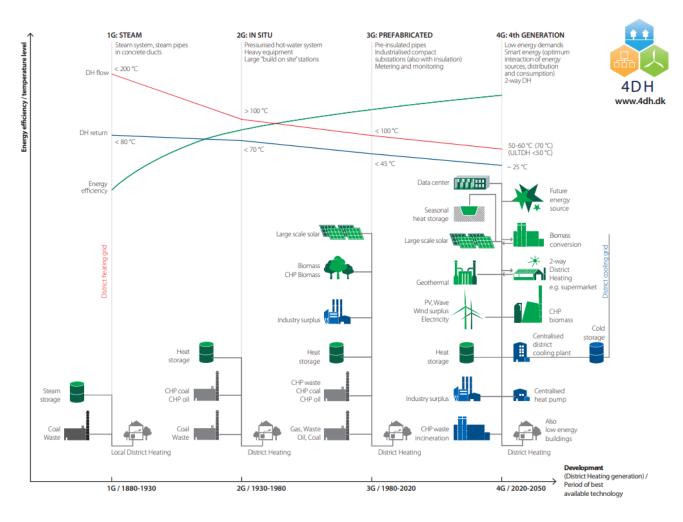
EXPERIENCE WITH BOOSTER FOR DHW CIRCULATION IN MULTI APPARTMENT BUILDING

- <u>Jan Eric Thorsen</u> (*), Director Danfoss Heating Segment Application Centre
- Svend Svendsen, Kevin Michael Smith, Technical University of Denmark, Department of civil engineering
- Torben Ommen, Technical University of Denmark, Department of mechanical engineering.
- Morten Skov, HOFOR, Greater Copenhagen District Heating Utility

Part of project: www.energylabnordhavn.dk

Funded by:

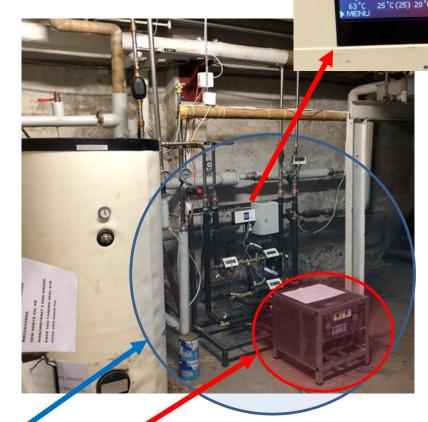


The aim is to reduce the District heating return temperature

Focus is on:

Domestic Hot Water Circulation

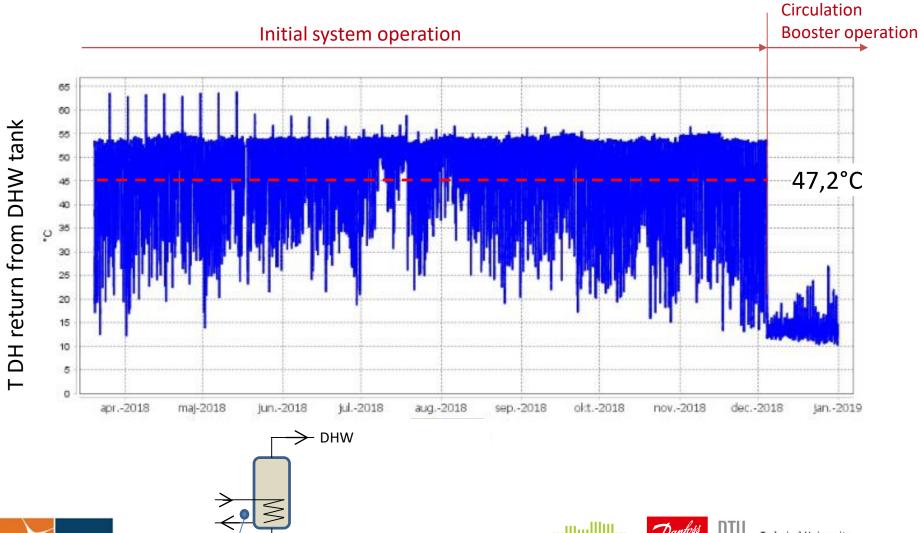
The Basic Concept of Circulation Booster:



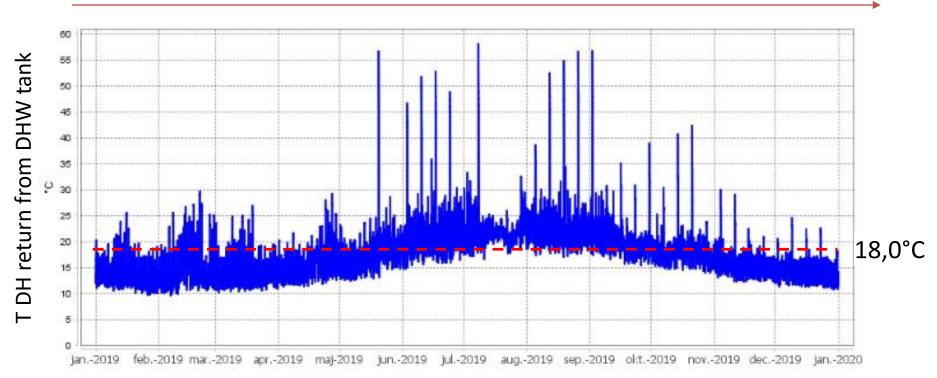
6th International Conference on Smart Energy Systems 6-7 October 2020 #SESAAU2020

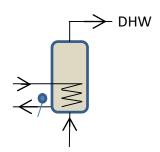
Field Location and Installation:

Circulation Booster


Heat Pump

DHW system tank data

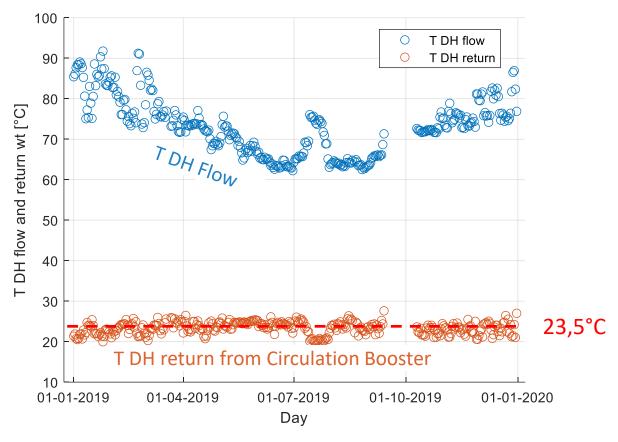




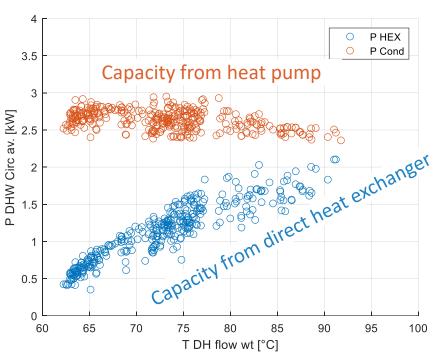
DHW system tank data

Circulation Booster operation

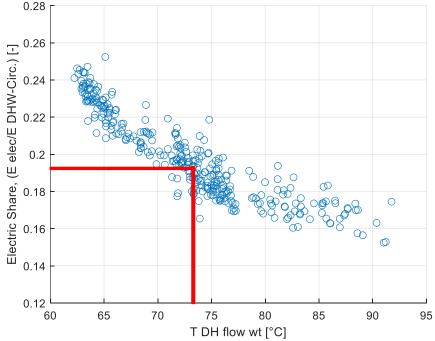
Average return temperature



Operational data Circulation Booster (daily average):


T DH flow and return from Circulation Booster Flow weighted T DH return from CB 23,5°C

Operational data Circulation Booster (daily average):

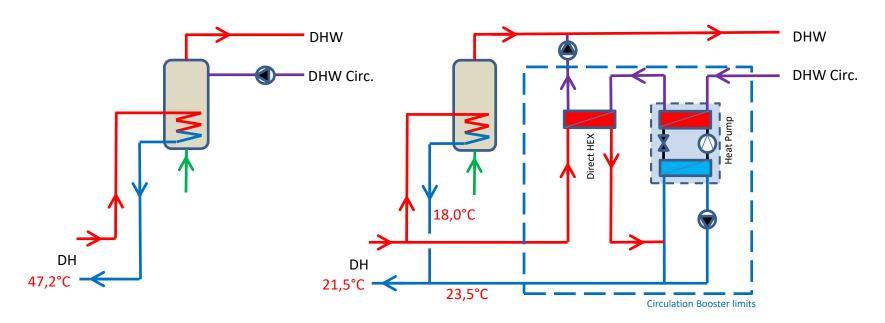


Heat Pump capacity more or less
Constant, due to constant speed of HP
and basically const. temperatures.

Yearly variations handled by direct heat exchanger

Electric share for heating up DHW circulation

28


Electric share of 19,3% representative for the year. Weighted by Circulation heat loss

Economic case of Circulation Booster:

Yearly DHW circ loss = 33,3 MWh/y (64%) Yearly DHW production = 19,0 MWh/y (36%)

Typical DHW circulation loss for 5 pipe systems

For some installations share of DHW circulation loss even higher !

Income: Reduced DH return temperature, resulting in

bonus from utility side

Expense: Investment & installation of Circ. Booster

Electric costs for running HP

Maintenance

Economic case of Circulation Booster:

(case]	

Current tariffs:

T DH ret. bonus	7.110	DKK/y
Saved DH	4.252	DKK/y
Electric costs	12.018	DKK/y
Maintenance	500	DKK/y
Yearly Saving	-1.157	DKK/y

Inv. + Inst.	30.000	DKK
Simple pay back time	N.A.	years

Electricity	1.870	DKK/MWh
DH	662	DKK/MWh
T DH return bonus *	5,29	DKK/MWh/°C

^{*) 0,8%} of DH price

Case 2:

Current tariffs + double T DH return bonus:

T DH ret. bonus	14.220 DKK/y 1
Saved DH	4.252 DKK/y
Electric costs	12.018 DKK/y
Maintenance	500 DKK/y
Yearly Saving	5.953 DKK/y 1
	_

Inv. + Inst.	30.000	DKK
Simple pay back time	5,0	years

Electricity	1.870	DKK/MWh
DH	662	DKK/MWh
T DH return bonus **	10,58	DKK/MWh/°C

Case 3:

Current tariffs + reduced electricity tax

T DH ret. bonus	7.110	DKK/y
Saved DH	4.252	DKK/y
Electric costs	6.543	DKK/y
Maintenance	500	DKK/y
Yearly Saving	4.319	DKK/y
		_

Inv. + Inst.	30.000	DKK
Simple pay back time	6,9	years

Electricity	1.018	DKK/MWh
DH	662	DKK/MWh
T DH return bonus *	5,29	DKK/MWh/°C

^{**) 1,6%} of DH price

Conclusions

- The developed and tested Circulation Booster works as expected
- The DH return temperature is reduced from 47,2°C to 21,5°C
- Case 2 (double of DH return temperature bonus) results in a direct pay back time of 5,0 years
- Case 3 (low electric taxes) results in direct pay back time of 6,9 years
- A combination of case 2 and 3 results in a direct payback time of 2,6 years
- Further optimization potential of pay back time, due to optimization of system, e.g. COP and operation. This is in focus as next step

Thank You for the Attention...

Contact information

Jan Eric Thorsen

Director, Danfoss Heating Segment Application Centre

Mail: jet@danfoss.com

