

RANKING OF HEAT SOURCES AND SINKS BASED ON SEASONAL PERFORMANCE ESTIMATION AND DEMANDS FOR HEATING AND COOLING AREAS

Henrik Pieper, PostDoc Igor Krupenski Andres Siirde Anna Volkova Department of Energy Technology Tallinn University of Technology

MOTIVATION: DH NETWORK OF TALLINN, ESTONIA

- Various heat sources & heat sinks
- Heat pumps, chillers, free cooling
- Which one is best suitable for
 - DH and/or DC supply
 - High performance
 - Best economics
 - Small or large capacities

MOTIVATION: SIMPLIFY AND REDUCE EFFORT FOR COP CALCULATION

- 5 heat sources & sinks
- 3GDH & 4 GDH
- DC & HTDC
- 14 different combinations
- Hourly calculations (8760 h)
- \approx 122,640 calculation steps
- Linear approximations for energy planning models helpful

METHODS: THERMODYNAMIC MODELLING

- EES (Engineering Equation Solver)
- 2-stage HP with open intercooler
- Ammonia as refrigerant
- Screw compressor polynomial

- 1-stage chiller & heat exchanger
- 3 operation modes:
 - 100 % free cooling
 - 100 % mechanical cooling
 - Mix of both (HEX pre-cooling)

TALLINN UNIVERSITY OF TECHNOLOGY

METHODS: COP APPROXIMATION

METHODS: COP APPROXIMATION FOR HEAT PUMPS

$$COP_{off} = COP_d + a(T_{source,i} - T_{source,i,d}) + b(T_{DH,s} - T_{DH,s,d}) + c(T_{DH,r} - T_{DH,r,d}) + d(LR - LR_d)$$

Heat source DH supply DH return Heat load

Design	Groundwater	River, Lake	DC	HTDC
parameter	& Sewage	& Seawater		
T _{source.i.d}	7	4	16	20
$T_{\text{source.o.d}}$	1	1	6	12
$T_{\mathrm{DH},s,d}$	85			
$T_{\mathrm{DH,r},d}$	60			
LR _d	1			
COP_d	2.99	2.99	3.17	3.51

Parameter	Groundwater	River, Lake	DC	HTDC
variation	& Sewage	& Seawater		
T _{source,i}	722	419	1220	1724
$T_{\mathrm{DH},s}$	7085			
$T_{\mathrm{DH},r}$	4560			
LR	0.251			

RESULTS: COP APPROXIMATION FOR HEAT PUMPS

TALLINN UNIVERSITY OF TECHNOLOGY

RESULTS: RANKING OF HEAT SOURCES BASED ON PERFOMRANCE ESTIMATION

Heat source	Seasonal	Average	Weighted
	COP	temperature	average
			temperature
HTDC	3.81	20	20
DC	3.43	16	16
Sewage	3.32	13.01	11.20
Lake	3.27	10.32	6.43
River	3.22	9.10	4.90
Seawater	3.22	8.24	4.90
Groundwater	3.20	7	7

DISCUSSION

- Coefficients also for other DH design temperatures and heat sources
- COP approximation for cooling (heat exchanger and chiller)
- Comparison to other COP estimation methods
- Comparison with real heat pump performance

CONCLUSION

- HP COP approximation for different heat sources
- Deviations of COP < 3.5 %</p>
- Ranking of heat sources for Estonian conditions
- Practical application:
 - Steps 1-3: HP manufacturer/researcher (thermodynamic model)
 - Step 4: Utility company/energy planner (apply COP approx.)

TALLINN UNIVERSITY OF TECHNOLOGY

taltech.ee/en

Henrik.pieper@taltech.ee