

Rooftop Photovoltaic

An Algorithmic Solution for Obtaining Total Potential Power Generation by Processing Solar Irradiance Data

M. Sc. Hannes Koch, Prof. Dr.-Ing. Stefan Lechner, M. Sc. Sebastian Erdmann hannes.koch@me.thm.de THM – University of Applied Sciences Gießen, Germany

Overview

- Goal of the Approach and Novel Aspects
- Data Sources
- Methodology
- Programmatic Approach
- Results

Goal of the Approach and Novel Aspects

- Any amount of high resolution solar irradiance raster data can be processed fast and efficiently.
- Geometrical traits of rooftop surfaces can be evaluated solely based on raster data.
- 3. The methods eligible to evaluate surfaces are interchangeable.
- The algorithm's efficiency is barely dependent on the method applied to investigate the raster cells.

Data Sets (1)

The algorithm requires:

- 1. A high resolution data set containing information on yearly solar irradiance, e.g. in $\left[\frac{kWh}{m^2 \cdot a}\right]$
- 2. A polygon layer containing the building ground areas to be examined

Preprocessing: Clip raster data to building ground areas

Data Sets (2)

Polygon layer and raster layer (grey scaled)

Raster layer clipped to polygon layer

[QGIS 2020, Sol 2019]

Methodology (1)

- 1. Set a threshhold value for solar irradiance, e.g. 800 $\left[\frac{kWh}{m^2 \cdot a}\right]$
- 2. Set all raster values below given threshold to zero

"Fragments" remain, representing areas uncapable of hosting PV modules!

Methodology (2)

- Extract buildable surfaces by investigating each raster cell's neighbourhood
- Proposed method (others are possible) Step One:
 - 1. Choose a number of cells in the expanded MOORE neighbourhood that have to be non-zero
 - 2. Set the investigated cell's value to zero if the number of non-zero cells is below the chosen value

Investigate Expanded MOORE neighbourhood [Guan, 2009]

Setting the criterion to allow corner points of rooftops

1	1	0	0	0
1	0	0	0	0
0	0	1	1	0
0	0	1	1	0
0	1	1	1	0

Check for criterion using a Boolean Mask of raster data set

Methodology (3)

- Proposed method (others are possible) Step Two:
 - 3. Choose a number of adjoining cells that have to be non-zero
 - 4. Repeat the investigation done before, now regarding the VON-NEUMANN-neighbourhood

Investigating Expanded Von-NEUMANN neighbourhood [Guan, 2009]

0 0 1 1 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 1

0

0

1

0

1

Preventing non adjoining cell structures from being classified as buildable

UNIVERSITY OF APPLIED SCIENCES

Setting the criterion to at

least two adjoining cells

Programmatic Approach

- Large amount of raster cells requires vectorization, minimizing memory latency
- Operations carried out across two coordinate axes require a third axis to be vectorized
 [v. d. Walt, 2011]
- Appending neighbours' values to the third axis can be done simultaneously
- Reduces the number of calculation steps to the number of cells in the expanded MOORE neighbourhood

Results (1)

Raster layer before neighbour investigation

Raster layer after neighbour investigation

6th International Conference on Smart Energy Systems 6-7 October 2020 #SESAAU2020

Results (2)

[Gmaps, 2020]

- The algorithm processes a 4000x4000 raster file in approx. 0.7 seconds
- For comparison, a procedural solution with two for-loops takes approx. 5.8 seconds

								r anna la	
Fri	Sep	11 15:52	:22 20	020	raste	r/stats_v	ectorize	ed	
		497 fun	ction	calls	(469	nrimitive	calls)	in 0 680	seconds
		437 Tull	ction	cuiis	(105	pi 10110170	calls)	111 0.000	30001103
Fri	Sep	11 15:52	:28 20	020	raste	r/stats_Do	oubleFor	Loop	
		458 fun	otion	col1c	(120	orimitivo	collc)	in 5 776	cocondo

Thank you for your attention!

Please refer any questions to: hannes.koch@me.thm.de

M. Sc. Hannes Koch, Prof. Dr.-Ing. Stefan Lechner, M. Sc. Sebastian Erdmann hannes.koch@me.thm.de THM – University of Applied Sciences Gießen, Germany

Literature

[Sol, 2019]	Provided by the Hessian Ministry of Economics, Energy, Transport and Housing, publicly available via "Solarkataster Hessen". <u>https://www.energieland.hessen.de/solar-kataster</u> , [Accessed: 23.07.2019]			
[QGIS, 2020]	QGIS Development Team (2020). QGIS Geographic Information System. Open Source Geospati Foundation Project. http://qgis.osgeo.org			
[Gmaps, 2020]	Google Maps, Satellite imagery, accessed via QGIS application in May 2020.			
[v. d. Walt, 2011]	Stéfan van der Walt et. al. (2011): The NumPy Array: A Structure for Efficient Numerical Computation, p. 3, Stellenbosch University South Africa, DOI: 10.1109/MCSE.2011.37			
[Guan, 2009]	Qinfeng Guan, "pRPL: an open-source general-purpose parallel Raster Processing programming Library", p. 58, University of California, Santa Barbara, DOI: 10.1145/1517463.1517471			