Linking energy efficiency policies toward 4th generation district heating system

Ieva Pakere, Armands Gravelsins, Gatis Bazbauers, Dace Lauka, Dagnija Blumberga

Riga Technical University

Powered by

Image: Second guniversity

Denmark

Image: Second guniversity

Aim of the study:

 Investigate links between different elements of 4th generation district heating system in the long-term perspective

Den Europæiske Fond

Vi investerer i din fremtid

Method:

AALBORG UNIVERSITY DENMARK

NVFS

System dynamics modeling

Analysis of selected policy scenarios

The system dynamics model analysed four different scenarios:

- Baseline scenario
- The fossil fuel tax scenario
- Renewable energy support scenario (subsidy scenario)
- Combined policy scenario

The model used 6 different policy instruments:

- Increase of the Natural Resources Tax on the CO₂ emissions and excise duties on natural gas
- Financial support for energy efficiency measures in the consumption part
- Financial support for the integration of RES into DH and individual heating
- Financial support for the replacement of DH networks and the promotion of the transition to lowtemperature heating

Amount of aid in different scenarios by sector

Produced heat in national heat supply in Combined policy scenario

Achieved share of RES in district, individual and national heat supply in Baseline and Combined policy scenarios

Heat produced by CHP in different policy scenarios

Powered by

The amount of CO₂ emissions emitted in the different scenarios in the total heat supply

Conclusions

- By combining changes in tax policy and financial support in the form of subsidies, it is possible to achieve a significant reduction in fossil energy resource use in the national heat supply.
- In the Baseline scenario the use of RES in 2030 will be close to 60 %. However, in the Combined policy scenario it is possible to achieve the share of RES up to 80 % in DH and 62 % in individual heat supply.
- RES in the national heat supply in 2030 would be 66 %, which is 8 % more than planned in the decarbonisation dimension of national plan.
- In the Combined policy scenario, it is possible to reduce the amount of annual CO₂ emissions by circa 75% by the year 2050.
- The modeling results show that support in the form of subsidies has a greater impact on key targets than tax increases.

The research is funded by the Ministry of Economics of the Republic of Latvia, project "Assessment of Latvia's renewable energy supply-demand economic potential and policy recommendations", project No. VPP-EM2018/AER_1_0001

