

A cost-optimized approach in regional decarbonisation: the integrated and dynamic energy modelling of the Province of Trento (Italy)

Presenter: Diego Viesi (Fondazione Bruno Kessler – Italy)

The Autonomous Province of Trento

Country	Italy	and the	nakar
Region	Trentino-Alto Adige/Südtirol	Elicitation -	822
Province	Autonomous Province of Trento	The state of	
Capital	Trento (118,542)		
N. Municipalities	175	A STATE OF	7 7 7
Area	6,212 km ²		The state of
Population - total	539,898		
Population - density	87 inh/km ²	1	

In Italian: Provincia Autonoma di Trento (PAT)

Beyond 2020: a new Provincial Energy Environmental Plan

 Agenzia provinciale per le risorse idriche e l'energia (APRIE)

Policymaker

 Università degli Studi di Trento (UNITN)

University

 Fondazione Bruno Kessler (FBK)

Research Center

 Fondazione Edmund Mach (FEM)

Research Center

A DEDICATED WORKING GROUP

In Italian: Piano Energetico Ambientale Provinciale (PEAP)

Case study for the IMEAS project

The <u>IMEAS</u> project (Integrated and Multi-level Energy Model for the Alpine Space) supports public administrations, energy agencies and others involved in <u>planning sustainable energy policies</u>, promoting an integrated approach and common tools that, through the construction and strengthening of skills, and the sharing of good practices, can indicate the measures to be implemented in the Alpine Space for an efficient and low-carbon energy model.

Among the project activities, the **Autonomous Province of Trento** (PAT) is the pilot area for Italy to test new methodologies for regional energy planning.

Case study for the STARDUST project

STARDUST is an EU Horizon 2020 Smart Cities project, which brings together advanced European cities, thus forming into a constellation of "innovation islands" – exemplary models of **smart**, **highly efficient**, **intelligent and citizen-oriented cities**.

Among the project Lighthouses, the city of Trento will promote actions for the energy refurbishment of three towers (new envelope, PV, GSHP, advanced monitoring), to support electric mobility (new vehicles, new charging points, planning and impacts on the electricity network), for ICT (sensor network, participation portal, smart points)

Decarbonisation goals of the European Union

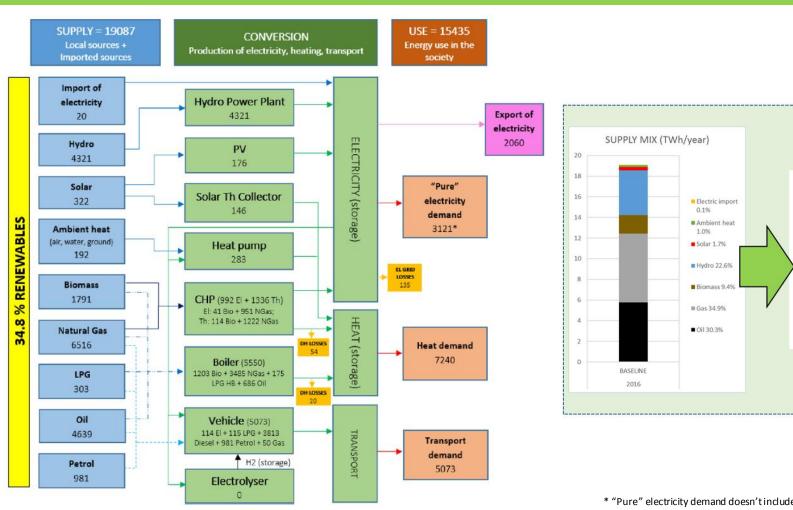
ENERGY AND CLIMATE EU GOALS

- 2020: 20% CO2 emissions compared to 1990
- > 2030: 40% CO2 emissions compared to 1990
- > 2050: from -80% to -100% CO2 emissions compared to 1990

Is it possible to achieve these goals in the PAT? Using which technologies? What are the costs?

REFERENCE SCENARIOS (REF): maintain the same current technological mix

energy efficiency and use of renewable sources


Energy Use Mix - PAT 2016

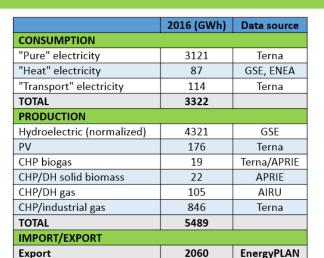
"Pure"

Electricity

20%

Baseline PAT 2016: Energy flow chart (GWh)

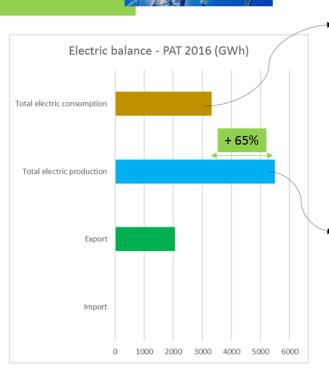
* "Pure" electricity demand doesn't include electricity consumption for heat and transport counted in the corresponding sectors.

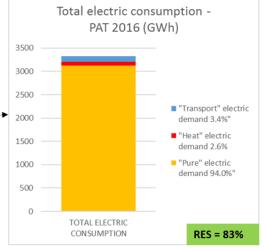


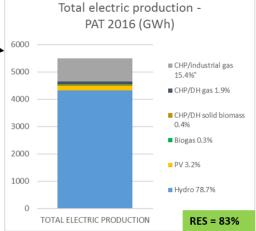
Import

6th International Conference on Smart Energy Systems 6-7 October 2020 #SESAAU2020

Electric balance PAT 2016

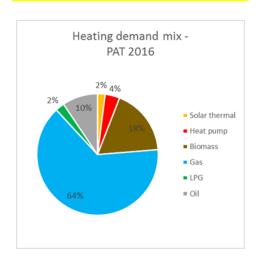

PRODUCTION = 165% CONSUMPTION

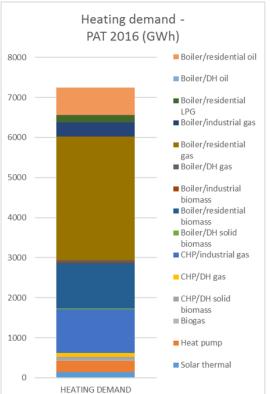

20


EnergyPLAN

RENEWABLE PRODUCTION = 83%

RENEWABLE CONSUMPTION = 83%

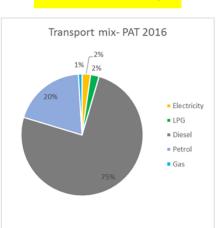

Heating demand PAT 2016

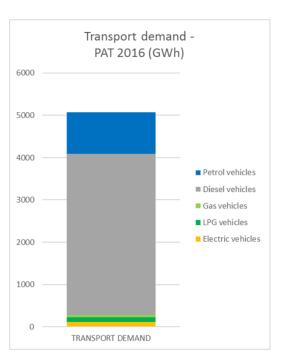


	2016 (GWh)	Data source
Solar thermal	146	GSE
Heat pump	283	GSE, ENEA
CHP biogas	24	Terna/APRIE
CHP/DH solid biomass	68	APRIE
CHP/DH gas	103	AIRU
CHP/industrial gas	1087	Terna
Boiler/DH solid biomass	23	APRIE
Boiler/residential biomass	1132	AIEL
Boiler/industrial biomass	41	GSE
Boiler/DH gas	39	AIRU
Boiler/residential gas	3079	MISE
Boiler/industrial gas	355	MISE
Boiler/residential LPG	175	MISE
Boiler/DH oil	4	AIRU
Boiler/residential oil	681	MISE
TOTAL	7240	

DISTRICT HEATING = 3%

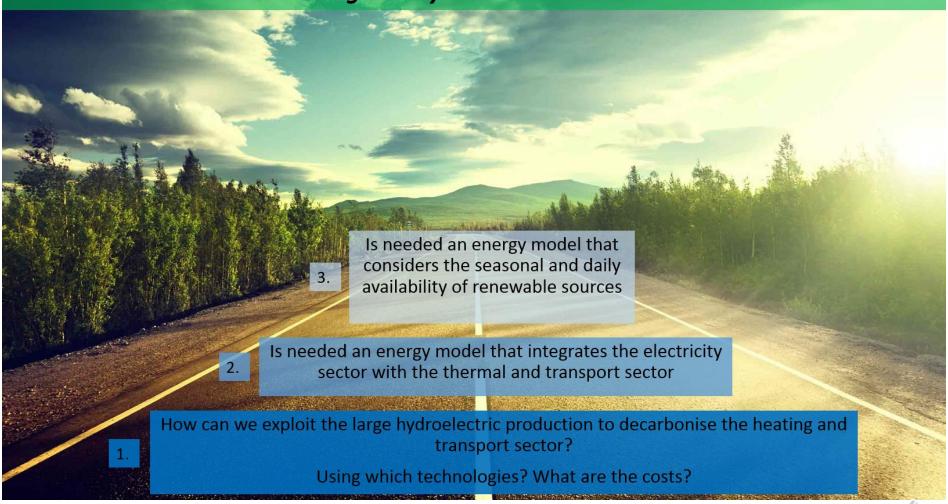
RENEWABLE HEAT = 24%



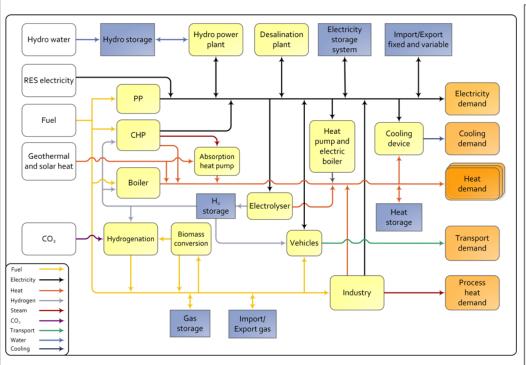

Transport consumption PAT 2016

	2016 (GWh)	Data source
Electric vehicles	114	Terna
LPG vehicles	115	MISE
Diesel vehicles	3813	MISE
Petrol vehicles	981	MISE
Cas vahislas	50	SERVIZIO
Gas vehicles	50	COMMERCIO PAT
TOTAL	5073	

RENEWABLE TRANSPORT = 2%



... towards a Trentino energetically autonomous with 0 carbon emissions ...



The dynamic & integrated energy model: EnergyPLAN

- HOURLY ENERGY BALANCE ANALYSIS
- ECONOMIC ANALYSIS
- ENVIRONMENTAL ANALYSIS

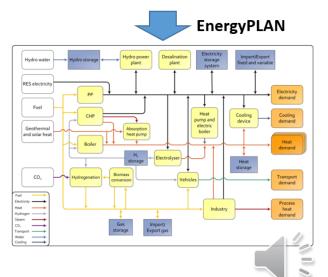
INFORMATION REQUIRED:

- Energy consumption (annual + hourly profiles)
- Energy production (annual + hourly profiles)
- Production mix for the national electricity grid
- Efficiencies (energy production, energy distribution)
- 5) CAPEX (investment cost)
- Interest rate (6% in this study)
- 7) OPEX (maintenance cost)
- 8) Lifetime
- Energy carriers cost (annual + hourly profiles only for the national electricity market)
- 10) CO2 emissions of energy carriers

TIME STEPS:

2016 2030 2050

Technologies and energy carriers considered


ELECTRICITY PRODUCTION	COGENERATION	THERMAL PRODUCTION	HYDROGEN PRODUCTION	TRANSPORT	STORAGE	BUILDINGS
HYDROELECTRIC	GAS COGENERATOR	GAS BOILER	ELECTROLYZER	ICE VEHICLES (diesel, petrol, LPG, gas)	THERMAL	EFFICIENT ENVELOPE
PV	BIOGAS COGENERATOR	OIL BOILER		HEV VEHICLES	BATTERY	
NATIONAL ELECTRICITY GRID		LPG BOILER		PHEV VEHICLES	HYDROGEN	
		BIOMASS BOILER/STOVE		BEV VEHICLES		
		HEAT PUMP		FCEV VEHICLES		
		SOLAR THERMAL				

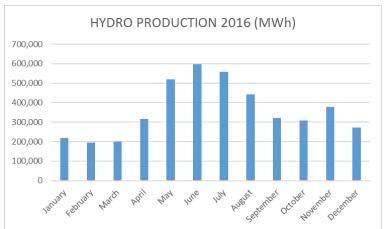
TECHNOLOGICAL CHOICES:

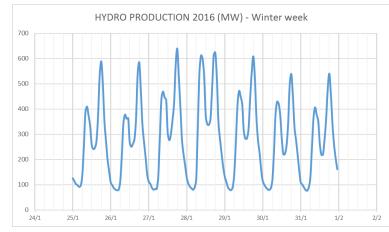
- $\bullet \quad \hbox{ In the model are considered } \underline{\hbox{technologies and energy carriers today well known}}\\$
- Particular attention to energy efficiency and renewable sources
- Of these technologies and energy carriers, the technical, economic and environmental evolution is analyzed in the 2016-2050 period

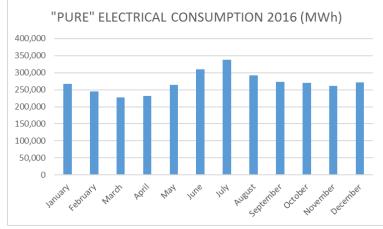
Use of renewables	
Use (partial) of renewables	
Use of non-renewables	
Use (efficient) of non-renewables	
Energy efficiency	

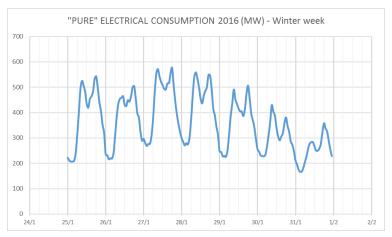
Hourly profiles: production, demand, electricity market

	Data source and methodology
"Pure" electric consumption	HOURLY PROFILE: Terna - Transparency Report (hourly data Trentino-Alto Adige/Südtirol 2016).
Hydroelectric production	MONTHLY PROFILE: Hydro Dolomiti Energia (monthly data PAT 2007-2016). HOURLY PROFILE: Terna - Transparency Report (hourly data Trentino-Alto Adige/Südtirol 2010-2016).
PV production	HOURLY PROFILE: PVGIS - Trento Typical Meteorological Year (TMY) 2007-2016.
Individual Heating	SUBDIVISION OF CONSUMPTION: SH, HSW (23% of SH), cooking (10% of SH): solar thermal, heat pumps, Boiler/residential biomass, Boiler/residential gas, Boiler/residential LPG, Boiler/residential oil; industrial processes: CHP biogas, CHP/industrial gas, Boiler/industrial biomass, Boiler/industrial gas. HOURLY PROFILE: SH: profile of the hourly heating degree days using the hourly temperature data from PVGIS - Trento TMY 2007-2016; HSW: UNI EN 15316-3-1:2007 (Table A.2); cooking: FBK hypothesis; industrial processes: constant.
District Heating	SUBDIVISION OF CONSUMPTION: SH, HSW (23% of SH), cooking (10% of SH): CHP/DH solid biomass, CHP/DH gas, Boiler/DH solid biomass, Boiler/DH gas, Boiler/DH oil. HOURLY PROFILE: SH: profile of the hourly heating degree days using the hourly temperature data from PVGIS - Trento TMY 2007-2016; HSW: UNI EN 15316-3-1:2007 (Table A.2); cooking: FBK hypothesis.
Solar thermal	HOURLY PROFILE: Hourly data of radiation and temperature from PVGIS - Trento TMY 2007-2016; use of the optical and thermal efficiency parameters of a standard flat solar panel.
Transport consumption	DAILY PROFILE: PAT 2016 traffic data (PAT Servizio Gestione Strade). HOURLY PROFILE: 2016: FBK supply profile hypothesis for ICE vehicles and electric trains; 2030 and 2050: FBK supply profile hypothesis for ICE vehicles, HEV, PHEV (fuel), FCEV, electric train + FIF* charging profiles for PHEV (el) and BEV.
Electric market	HOURLY PROFILE: 2016: Prezzo Unico Nazionale (PUN) 2016 (Gestore dei Mercati Energetici - GME); 2030 and 2050: average PUN 2013-2017 (GME).


^{*}FIF: Fuelling Italy's Future – author: Transport & Environment (2018)







... same work for: PV production, individual heating consumption, district heating consumption, solar thermal production, transport consumption, national electricity market.

0.00

Nuclear/CCS -

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

4.64

0.00

0.00

0.00

Baseline PAT 2016 – EnergyPLAN analysis

SUPPLY (TWh/year) = 19.09
PRIMARY ENERGY
CONSUMPTION (TWh/year) = 17.05
RES share (% SUPPLY) = 34.8

CO2 emission (Mt/year) = 2.89

																														-
Input PEAP_PAT_REF_2016_DH_v10.txt The EnergyPLAN model 12.0														1																
Electricit Fixed de Electric I Electric d	mand neating +	3.2	25 19	Fixed	imp/ex portation	p. 0.00	0				Pump)	MJ/s 1 0.2 0	elec. 9 0.5	3.0	COP	KEOL Minim Stabili	regula um St sation	abilisati share	00 ion sha of CHP	0.00000 re 0.0	0 0 0		Fuel Price level: Basic Capacities MW-e Hydro Pump: 0					ec. Th
District h Solar Th Industria	District heating demand 0.00 0.31 0.00 0.31 Solar Thermal 0.00 0.00 0.00 0.00 Industrial CHP (CSHP) 0.00 0.00 0.00 0.00									Group CHP Heat Boiler	3: Pump	(0	0 0.0 0 0	0.9	3.0	0	Minim Heat I Maxin	um Pf Pump num in	maximu nport/ex	um shar	re 0.5 999999	0 MW 0 9 MW		Electr Electr Electr	Turbin ol. Gr.2 ol. Gr.3 ol. tran	ne: (0 0 0 0	0.90 0 0.80 0 0.80 0 0.80	0.10
Demand after solar and CSHP 0.00 0.31 0.00 0.31											ensing	(0.4				Additi		T el gri tor	0.00	2016.b				ficroCH fuel ra	The same of	0.00	0.80	Ę
Photo Voltaic 174 MW 0.18 TWh/year 0.00 Grid Heatstorage: Wind 0 MW 0 TWh/year 0.00 stabili- Fixed Boiler:															.30 GW 0.0 Per		100000000000000000000000000000000000000		factor		EUD/	MWh p	- 100	(TWh	/year)	Coal	Oil	Ngas	Bioma	
Wind River Hy			0 MW 0 MW		0 T	Wh/yea	ar 0.0	0 sati	on	101 - 12	icity pro		(6,67)	SHP V	Vaste	(TWh/y	777	Avera Gas S	ge Ma torage	rket Pri	ce 43 0	EUR/I		I. IVIVV	Trans	ehold	0.00	4.96 0.82		0.00 1.56
Hydro Po Geotheri			0 MW	4		Wh/yea Wh/yea				Gr.2: Gr.3:			0.0					Synga		acity to grid	0	MW			Indus		0.00	0.00	0.00	0.00
Outr	sut.									Oilo			0.0	0 0.0								2.84			1000000		2000			
Output District Heating Electricity Exchangement																														
3	Demand Production												Consi	umption	2					Product						Balance			EXC	larige
_	Distr. heating		Waste		CHP	HP	ELT	Boiler	EH	Ba- lance	Elec.			Elec- trolyse		Hydro		RES	Ну-	Geo- hermal	Waste	P CHP	PP	Stab- Load	Imp	Exp	CEEP	EEP	Payn	nent Exp
	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	%	MW	MW	MW	MW	Million	EUR
January February March	96 69 51	0	0	0	81 56 39	0	0	14 13 12	0	0	358 352 305	12 12 13	23 17 13	0	0	0	0	12 16 22	293 278 270	0	0	276 203 154	0	100 100 100	0 6	189 123 126	0	189 123 126	0	3
April	31	0	0	0	21	0	0	10	0	0	322	13	9	0	0	0	0	24	438	0	0	101	0	100	0	220	0	220	0	5
May	10	0	0	0	3	0	0	6	0	0	354 430	14 14	4	0	0	0	0	26 26	697 830	0	0	44	0	100	0	394 450	0	394 450	0	10
July	9	0	0	0	3	0	0	6	0	0	453	16	4	0	0	0	0	28	751	0	0	42	0	100	0	347	0	347	0	11
August	9	0	0	0	3	0	0	6	0	0	392	17	4	0	0	0	0	26	593	0	0	42	0	100	0	249	0	249	0	7
September October	er 9	0	0	0	3	0	0	6	0	0	380 363	15	6	0	0	0	0	23 17	446	0	0	63	0	100	10	114	0	114	0	5
Novembe Decembe	r 32	0	0	0	22 71	0	0	10	0	0	363 364	12	9	0	0	0	0	11	523 365	0	0	104 246	0	100	1 0	255 225	0	255 225	0	11
Average	35	0	0	0	26	0	0	9	0	0	370	14	10	0	0	0	0	20	492	0	0	113	0	100	3	235	0	235	Averag	ge price
Maximum Minimum	153	0	0	0	111	0	0	42	0	0	740 110	25	35	0	0	0	0	102	1122	0	0	417	0	100	179	860	0	088	(EUF	VMWh) 43
TWh/year	0.31	0.00	0.00	0.00	0.23	0.00	0.00	0.08	0.00	0.00	3.25	0.12	0.09	0.00	0.00	0.00	0.00	0.18	4.32	0.00	0.00	0.99	0.00		0.02	2.06	0.00	2.06	1	88
FUEL BA				2 0		-112	DD	Cont	la Ulaz-	- 14'-				ynthet		Win 4	M/G-	1 11	- ^	alas Ti	Tenne	haus-1	Indust				orrecte			ion (Mt)
01	DHP	CHP	CHE	8 8	oiler2 B	soller3	PP	Geo/N	iu Hydr	o Wa	ste Elo	.ry. ver	rsion F	uei	PV	Wind	Wind	и нус	ro S	olar.Th	ransp.	nouser	n. variou	USA (PAS)	200	mp/Exp	-04/0/09/2	-	otal N	SANGE .
Coal	-	-	0.00		01	-	-	-	148	12			-	-	2	-	12	-		- 4	4.96	0.82	526	5.7		0.75	-0.75 5.59			.26
N.Gas	-	0.31	0.00	3 77		-		-			8 4				-	16	-					6.30		6.6		.84	4.81			.97

Baseline PAT 2016 – EnergyPLAN analysis

Energy carriers cost (M€/year) = 1669

Oil cost (M€/year) = 727 Gas cost (M€/year) = 451 Electrical import cost (M€/year) = 1 Total cost imp. energy (M€/year) = 1179

Operating cost (M€/year) = 454

Investment cost (M€/year) = 2143

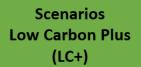
TOTAL ANNUAL COST (M€/year) = 4266

Outp	ut s	oec	ificat	ion	IS .	-	PEA	NP_I	PA	Г_R	EF_	_20	16_	_DH	_v10	.txt				Т	ne E	nei	rgy	PLAI	V mo	del	<u>12.0</u>	A
		r.1		_						Gr.2	Dist	rict Hea	ating P	roducti	on				Gr.3						DE	S speci	<u> </u>	a
	District heating MW		CSHP [)HP	District heating MW	Solar MW	CSHP MW	CHP MW	HP MW	ELT MW	Boiler MW	EH MW	Stor- age MW	Ba- lance MW	District heating MW	Solar MW	CSHF MW	CHP	HP MW	ELT MW	Boiler MW	EH MW	Stor- age MW	Ba- lance MW	RES1	RES2	RES3 R Vind 4-	
		0								0						0											0	
January February March	0	0	0	0	96 69 51	0	0	81 56 39	0	0	14 13 12	0	0	0	0 0	0	0	0	0	0	0	0	0	0	12 16 22	0	0	0
April May Iune	0	0	0	0	31 10 9	0	0	21 3 3	0	0	10 6 6	0	0	0	0	0	0	0	0	0	0	0	0	0	24 26 26	0	0	0
July August Septembe		0 0 0	0 0 0	0	9 9 9	0 0 0	0 0 0	3 3 3	0 0 0	0 0 0	6 6 6	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	28 26 23	0 0 0	0 0 0	0 0 0
October Novembe Decembe		0 0 0	0 0 0	0	17 32 85	0 0 0	0 0 0	9 22 71	0 0 0	0	7 10 14	0 0 0	0 0 0	0 0 0	0 0 0	0	0	0 0 0	0	0	0 0 0	0 0 0	0 0 0	0 0 0	17 11 10	0 0 0	0 0 0	0 0 0
Average Maximum Minimum	0 0	0 0 0	0 0 0	0 0 0	35 153 1	0 0 0	0 0 0	26 111 0	0 0 0	0 0 0	9 42 1	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	20 102 0	0 0 0	0 0 0	0 0 0
Γotal for t ΓWh/year		year 0.00	0.00	0.00	0.31	0.00	0.00	0.23	0.00	0.00	0.08	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.18	0.00	0.00	0.00 (
ANNUAL Total Fue Uranium Coal FuelOil Gasoil/Die Petrol/JP Gas hand Biomass Food inco Waste Total Nga Marginal of	I ex Nga: = = = esel= = Iling = = ome = = us Exchaioperation	s excha	0 0 1 90 336 0 65 0 0 sts =	791 451 0 -87				Januar Februa March April May June July Augus Septer Octobe Noven Decen	t mber er nber	0HP & Soilers MW 10 9 8 7 4 4 4 4 4 5 6 6 9	CHP2 CHP3 MW 108 75 52 28 4 4 4 4 4 12 30 95	PP CAE MW	S v / / 1 1) 1)))))))))))	ndi- ridual MW 715 272 971 648 284 268 275 279 419 677 540	Trans port MW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Indu. Var. MW 0 0 0 0 0 0 0 0 0 0		mand I m 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		S EXCI- Syn- gas MW 0 0 0 0 0 0 0 0 0	HANGE CO2 gas MW 0 0 0 0 0 0	9 9 N	oynHy gas MW 0 0 0 0 0 0 0 0	SynHy gas MW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stor-age MW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sum MW 1833 1356 1030 683 292 276 266 283 286 436 713 1643	Import MW 1833 1356 1030 683 292 276 266 283 286 436 713 1643	Ex po MN
mport	= = k =		1 -88 0 0					Averaç Maxim Minimi	ge ium	6 28 0	35 148 0	(2	717 646 102	0 0 0	0 0 0	75 282 10	1	0 0 0	0 0 0	0)	0 0 0	0 0 0	0 0 0	758 2821 106	758 2821 106	
otal vari	2 emissionable cost eration co	ts = osts =		0 1155 453 2029				Total f TWh/y		whole y	ear 0.31	0.00) (3.30	0.00	0.00	6.6	6 (0.00	0.00	0.00	0	.00	0.00	0.00	6.66	6.66	0.
OTAL A	NNUAL (COSTS	S =	3637																							osto-2:01	

Elaboration of dynamic-integrated-optimized scenarios 2030 and 2050 ... goals

EU ENERGY & CLIMATE GOALS

➤ 2030: - 40% CO2 emissions compared to 1990


> 2050: - 80% CO2 emissions compared to 1990

... potential «TECH RAPID» trajectory

> 2030: - 50% CO2 emissions compared to 1990

> 2050: - 90% CO2 emissions compared to 1990

Scenarios Low Carbon (LC)

Elaboration of dynamic-integrated-optimized scenarios 2030 and 2050 ... evaluation elements

STARTING POINT:

Current technology mix (Baseline 2016)

+

WHERE IS GOING PAT AND ITALY:

Local energy demand trends and technological perspectives

OPTIMIZED SOLUTIONS

EnergyPLAN+MOEA

<u>TECHNOLOGICAL</u> PERSPECTIVES AND OTHER

SOCIO-POLITICAL FACTORS

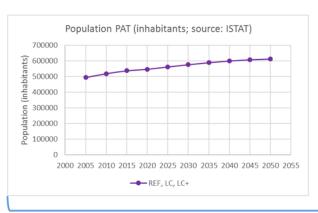
Considered in EnergyPLAN

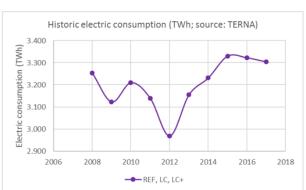
Analysis of energy flows in the Autonomous Province of Trento, Università degli Studi di Trento, 2019

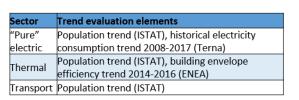
CONSIDERED TRENDS:

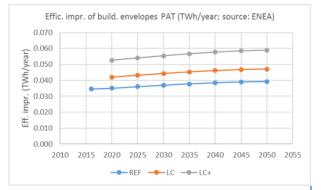
- <u>local energy demand</u> in the electric, thermal and transport sectors
- potential of energy efficiency
- potential of renewable technologies
- <u>potential of sector coupling</u>: thermal electrification (heat pumps), transport electrification (EV)
- use of thermal, electric and hydrogen storage

EnergyPLAN+MOEA, Fondazione Bruno Kessler, 2020

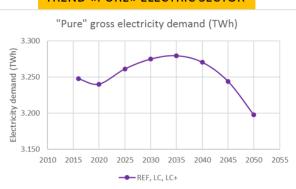

Modification of the optimized solutions with consideration of main technological perspectives and other socio-political factors (consumer choices, regulatory constraints, incentive opportunities)







Energy demand trend



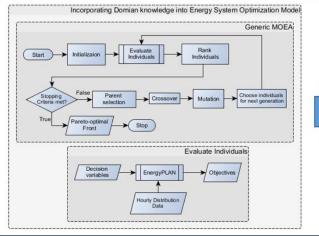


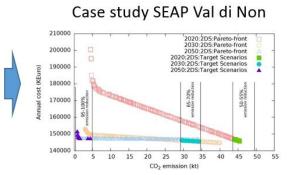
TREND «PURE» ELECTRIC SECTOR

TREND TRANSPORT SECTOR

National and local technological perspectives

- REF: maintain the same technological mix as the Baseline 2016
- LC, LC+:
 - ✓ "Italian National Energy and Climate Plan (NECP)" (MISE 2018): for the hydroelectric, PV, solar thermal, heat pump modeling;
 - √ "Report on tax deductions for the refurbishment of existing buildings" (ENEA 2018): for the implementation of energy efficient building envelopes;
 - ✓ "Energy Storage Report" (POLIMI 2016): for the introduction of electric batteries as "energy reserve" coupled with PV;
 - √ "Fuelling Italy's Future" (Transport & Environment 2018): for the transport sector modeling;
 - ✓ **FEM scenarios** (**FEM** 2019): for the increase in biogas CHP production;
 - ✓ PEAP working group considerations (APRIE, UNITN, FBK, FEM, 2018-2019): for the heating sector modeling:
 - "Individual Heating": (I) current political effort to prioritize the reduction of the oil and LPG boilers, (II) current political effort to extend the gas network to some areas currently not supplied, (III) users of biomass boilers are expected to remain constant at 2016 values;
 - "District Heating": the 2016 DH characteristics are expected to remain constant, both in terms of number of users and type of technologies.





Optimized solutions: EnergyPLAN+MOEA

Which scenarios make it possible to reach CO2 targets <u>at the lowest cost</u>? ...
.. the multi-objective analysis (<u>minimizing CO2 emission and total annual cost</u>) and the Pareto front

SCIENTIFIC ARTICLES PUBLISHED BY FBK:

- 1. Mahbub, M.S., Cozzini, M., Østergaard, P.A. and Alberti, F., 2016. Combining multi-objective evolutionary algorithms and descriptive analytical modelling in energy scenario design. Applied energy, 164, pp.140-151.
- 2. Mahbub, M.S., Wagner, M. and Crema, L., 2016. Incorporating domain knowledge into the optimization of energy systems. Applied Soft Computing, 47, pp.483-493.
- 3. Mahbub, M.S., Viesi, D. and Crema, L., 2016. Designing optimized energy scenarios for an Italian Alpine valley: the case of Giudicarie Esteriori. Energy, 116, pp.236-249.
- 4. Mahbub, M.S., Viesi, D., Cattani, S. and Crema, L., 2017. An innovative multi-objective optimization approach for long-term energy planning. Applied energy, 208, pp.1487-1504.

Newsletter no. 13 - November 2016

New study on combining EnergyPLAN with multi-objective evolutionary algorithms

In a new study by Mahbub et al, the versatility of EnergyPLAN and in particular the ability of EnergyPLAN to be run from other modelling environments is exploited in an automated methodology for generating scenarios, evaluating these according multiple objectives and subsequently generating new scenarios. EnergyPLAN is thus used in an application more commonly associated with investment optimisation models. See http://dx.doi.org/10.1016/j.apenergy.2015.11.042 for further details.

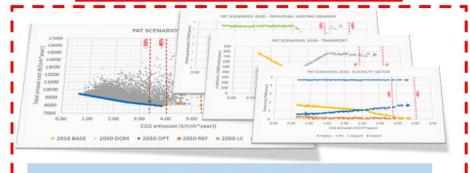
EnergyPLAN+MOEA: decision variables & boundaries

		2050													
Technology	MOEA LB LC&LC+	LC	LC+	MOEA HB LC	MOEA HB LC+	MOEA LB LC&LC+	LC	LC+	MOEA HB LC	MOEA HB LC+					
ELECTRICITY PRODUCTION															
Hydroelectric (TWh)	0			4.673	4.673	0			4.998	4.998					
PV (TWh)	0			0.700	0.800	0			1.480	1.860					
National electricity grid (TWh)	Calcu	ulated by En	ergyPLAN, n	o grid constr	aints	Calcu	ulated by En	ergyPLAN, n	o grid constr	aints					
COGENERATION (thermal produ	iction)														
CHP biogas (TWh)	0			0.038	0.042	0			0.044	0.052					
CHP/Indiv gas (TWh)	0			6.888	6.738	0			6.408	6.021					
CHP/DH biomass (TWh)		0.067	0.066				0.063	0.059							
CHP/DH gas (TWh)		0.101	0.099				0.094	0.088							
THERMAL PRODUCTION															
Solar thermal (TWh)	0			6.888	6.738	0			6.408	6.021					
Heat Pump (TWh)	0			6.888	6.738	0			6.408	6.021					
Boiler/Indiv oil (TWh)	0			6.888	6.738	0			6.408	6.021					
Boiler/Indiv LPG (TWh)	0			6.888	6.738	0			6.408	6.021					
Boiler/Indiv gas (TWh)	0			6.888	6.738	0			6.408	6.021					
Boiler/Indiv biomass (TWh)	0			1.384	1.354	0			1.288	1.210					
Boiler/DH biomass (TWh)		0.023	0.022				0.021	0.020							
Boiler/DH gas (TWh)		0.038	0.038				0.036	0.034							
Boiler/DH oil (TWh)		0.004	0.004				0.003	0.003							
HYDROGEN PRODUCTION															
Electrolyzer (MW)	Calculated	d by EnergyF	PLAN as mini	mum capaci	ty needed	Calculated	d by EnergyF	LAN as min	imum capaci [.]	ty needed					
TRANSPORT SECTOR															
Transport el (Mkm)	0			10071	10071	0			10700	10700					
Transport H2 (Mkm)	0			10071	10071	0			10700	10700					
Transport petrol (Mkm)	0			10071	10071	0			10700	10700					
STORAGE (capacity)															
Thermal storage (GWh)	Considere	ed a capacity	of 1 day of	average hea	t demand	Considere	ed a capacity	of 1 day of	average hea	t demand					
Battery storage (GWh)	0			2.635	3.022	0			5.522	6.905					
Hydrogen storage (GWh)	Consider	ed a capacit	y of 1 day o	f average H2	demand	Consider	ed a capacit	y of 1 day o	f average H2	demand					
BUILDINGS															
Energy eff. build. env. (TWh)		1.147	1.309				1.364	1.705							

A VERY COMPLEX OPTIMIZATION PROBLEM...

- 14 variable value technologies (values provided by MOEA, from 0 to max allowed by resource availability, social attractiveness, amplified trends, sector demand)
- 4 linked value technologies (values calculated by EnergyPLAN: national electricity grid, electrolyzer, thermal storage, hydrogen storage)
- 6 fixed value technologies
 (values defined by the PEAP working
 group considering Baseline 2016 +
 trends)

24 technologies


RESULTS

STEP1: EnergyPLAN+MOEA

EnergyPLAN+MOEA

Identify "Optimized Solutions"

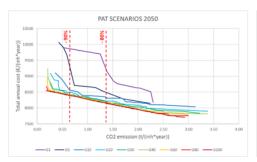
TECHNOLOGICAL PERSPECTIVES AND OTHER SOCIO-POLITICAL FACTORS

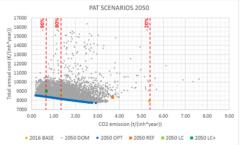
Modification of the optimized solutions with consideration of main technological perspectives and other socio-political factors

PEAP SCENARIOS LC e LC+

Optimized solutions: EnergyPLAN+MOEA







A VERY COMPLEX OPTIMIZATION PROBLEM (24 TECHNOLOGIES)...

In order to compare CO2 emission and total annual cost performance between different years, these values are normalized with respect to the number of inhabitants

For each time target:

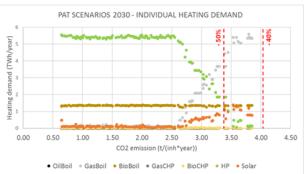
100 generations to achieve convergence
15000 combinations evaluated
150 optimized solutions constitute the nondominated Pareto front

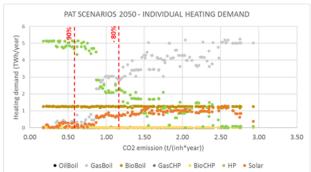
IN TOTAL ASSESSED 30000 COMBINATIONS

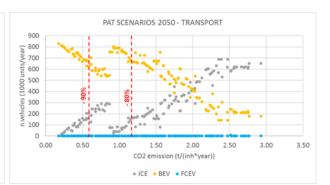
KEY MESSAGES (Optimized Indications)

- PARETO FRONT SOLUTIONS: each point on the Pareto front represents a scenario that allows a CO2 target to be reached at the lowest possible cost through an optimal combination of technologies;
- CO2 EMISSION vs TOTAL ANNUAL COST: in 2030 Pareto front scenarios show a reduction in CO2 emissions between -43 and -90%, compared to the 1990 value, and total annual costs within +0/+20%, compared to the 2016 value; in 2050 reductions in CO2 emissions between -57 and -97% are combined with total annual costs variations within -3/+8%; technological progress will allow to reach increasingly ambitious CO2 targets at costs comparable to the current ones

HEATING DEMAND


TRANSPORT


6th International Conference on Smart Energy Systems 6-7 October 2020 #SESAAU2020



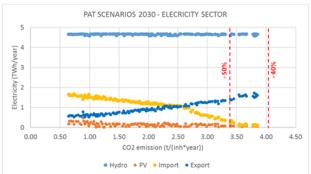
2050

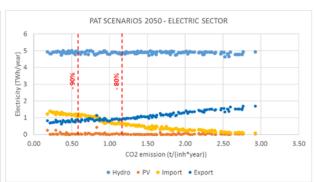
PAT SCENARIOS 2030 - TRANSPORT 900 € 800 700 گ 600 500 400 £ 300 200 = 100 3.50 0.50 1.00 1.50 2.00 2.50 3.00 4.00 4.50 CO2 emission (t/(inh*year)) • ICE • BEV • FCEV

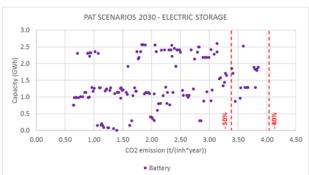
KEY MESSAGES (Optimized Indications)

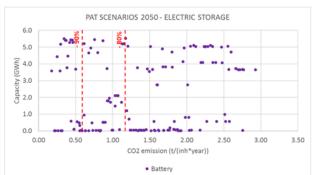
- INDIVIDUAL THERMAL SECTOR: maximum attractiveness for biomass boilers at all CO2 values, good for gas boilers and solar thermal only at high CO2 values, incremental for heat pumps moving towards low CO2 values;
- INDIVIDUAL COGENERATION: at all CO2 values, good attractiveness for biogas CHP (although in the reduced values of its potential), low for gas CHP;
- TRANSPORT SECTOR: good attractiveness for conventional vehicles (ICE) only at high CO2 values, good for BEV only at low CO2 values, low for FCEV at all CO2 values;
- ELECTRIFICATION AND SECTOR COUPLING:
 at low CO2 values the electricity become
 the most attractive energy carrier,
 exploiting green production not only for
 "traditional pure electricity demands" but
 also in the thermal (heat pumps) and
 transport (BEV) sectors;
 - DECARBONISATION OF INDIVIDUAL
 THERMAL SECTOR vs TRANSPORT SECTOR:
 to achieve the 2030 decarbonisation goals
 (between -40 and -50% of CO2 emission),
 interventions in the thermal sector are
 more attractive than those in the transport
 sector;

ELECTRICITY SECTOR

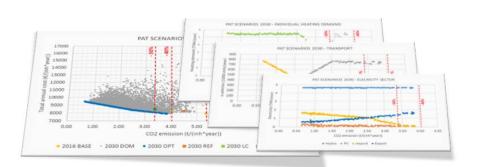

ELECTRIC STORAGE


6th International Conference on Smart Energy Systems 6-7 October 2020 #SESAAU2020




2030

2050


KEY MESSAGES (Optimized Indications)

- <u>ELECTRICITY PRODUCTION</u>: at all CO2 values, maximum attractiveness for hydroelectric production, low for PV;
- <u>ELECTRIC STORAGE</u>: the use of electrical storage (batteries) is attractive in many scenarios both in 2030 and 2050;
- ELECTRICITY IMPORT/EXPORT: in 2050, the greater availability of hydroelectric power and the greater efficiency of heat pumps and BEV minimize the demand for electric import to achieve high CO2 reductions;
- LOCAL RES: at all CO2 values maximum attractiveness for the wide use of local hydro and local biomass, to which is added at low CO2 emission values the wide use of local ambient heat; the attractiveness of local solar is limited to thermal use and up to values of 20% of the total individual thermal demand.

EnergyPLAN+MOEA

Identify "Optimized Solutions"

TECHNOLOGICAL PERSPECTIVES AND OTHER SOCIO-POLITICAL FACTORS

Modification of the optimized solutions with consideration of main technological perspectives and other socio-political factors

PEAP scenarios: REF vs LC vs LC+

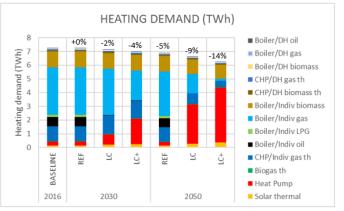
Heating demand

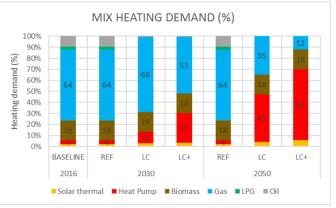
EnergyPLAN analysis TECHNOLOGIES

TWh/year	2016		2030			2050	
i wii/ year	BASELINE	REF	LC	LC+	REF	LC	LC+
ENERGY EFF. BUILD. ENV.	0.94	1.04	1.15	1.31	1.14	1.36	1.70
HEATING DEMAND	7.24	7.22	7.12	6.97	6.89	6.62	6.22
Solar thermal	0.15	0.15	0.20	0.24	0.14	0.27	0.36
Heat Pump	0.28	0.28	0.76	1.86	0.27	2.86	4.00
CHP biogas th	0.02	0.02	0.03	0.04	0.02	0.04	0.04
CHP/Indiv gas th	1.09	1.09	1.33	1.25	1.04	0.80	0.47
Boiler/Indiv oil	0.68	0.68	0.03	0.03	0.65	0.00	0.00
Boiler/Indiv LPG	0.18	0.17	0.01	0.01	0.17	0.00	0.00
Boiler/Indiv gas	3.43	3.43	3.38	2.18	3.27	1.37	0.15
Boiler/Indiv biomass	1.17	1.17	1.15	1.13	1.12	1.07	1.01
CHP/DH biomass th	0.07	0.07	0.07	0.07	0.07	0.06	0.06
CHP/DH gas th	0.10	0.10	0.10	0.10	0.10	0.09	0.09
Boiler/DH biomass	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Boiler/DH gas	0.04	0.04	0.04	0.04	0.04	0.04	0.03
Boiler/DH oil	0.004	0.004	0.004	0.004	0.003	0.003	0.003

KEY MESSAGES

HEATING DEMAND:

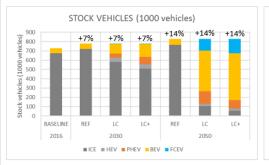

- · Decreases thanks to interventions to improve the efficiency of building envelopes
- 2030: 2% in LC and 4% in LC+
- 2050: 9% in LC and 14% in LC+

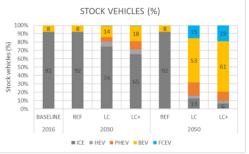

INDIVIDUAL HEATING

- Heat pump: from 4% in Baseline 2016 to 11/27% in LC/LC+ 2030 and to 43/64% in LC/LC+ 2050
- Solar thermal and CHP biogas increase slightly
- Biomass boiler stable
- Industrial gas CHP up slightly by 2030 and then decreased to 2050
- Gas boiler stable in LC 2030, down in LC 2050, LC+ 2030 and LC+ 2050
- · LPG and oil boilers falling sharply by 2030, absent in 2050

DISTRICT HEATING

• Unchanged (stable 3% of total PAT heat requirement)

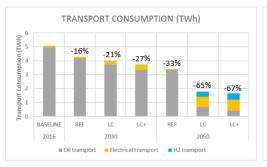

PEAP scenarios: REF vs LC vs LC+

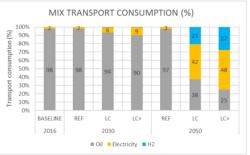


EnergyPLAN analysis TECHNOLOGIES

1000 vehicles/year	2016		2030		2050				
1000 Venicies/ year	BASELINE	REF	LC	LC+	REF	LC	LC+		
STOCK VEHICLES	730	781	781	781	829	829	829		
ICE (Internal Combustion	675	721	582	509	766	105	54		
Engine)	6/3	/21	362	309	700	103	34		
HEV (Hybrid Electric Vehicle)			46	48		25	25		
PHEV (Plug-in Hybrid Electric			43	77		132	91		
Vehicle)			43	//		132	91		
BEV (Battery Electric Vehicle)	56	59	106	142	63	440	503		
FCEV (Fuel Cell Electric Vehicle)			4	5		127	156		

TIANA (2016		2030		2050				
TWh/year	BASELINE	REF	LC	LC+	REF	LC	LC+		
TRANSPORT CONSUMPTION	5.08	4.27	3.99	3.72	3.42	1.79	1.66		
Electrical transport	0.12	0.10	0.24	0.35	0.09	0.75	0.79		
H2 transport	0.00	0.00	0.02	0.02	0.00	0.37	0.45		
Oil transport	4.96	4.17	3.74	3.35	3.33	0.67	0.41		

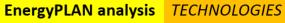

KEY MESSAGES


ENERGY DEMAND:

- Despite increasing stock vehicles, significantly decreases with the transition to electric and hydrogen mobility (but also thanks to increasingly efficient internal combustion vehicles)
- 2030: 21% in LC and 27% in LC+
- 2050: 65% in LC and 67% in LC+

ELECTRIC AND HYDROGEN MOBILITY

- Electric mobility: from 2% in Baseline 2016 to 6/9% in LC/LC+ 2030 and to 42/48% in LC/LC+ 2050
- Hydrogen mobility: absent in Baseline 2016, on an experimental basis in small captive fleets at 0.4/0.6% in LC/LC+ 2030, at 21/27% in LC/LC+ 2050



PEAP scenarios: REF vs LC vs LC+

Electric system

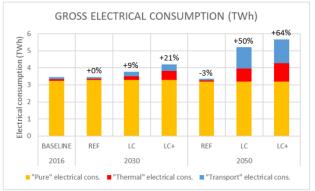
TWh/year	2016	2030			2050			
	BASELINE	REF	LC	LC+	REF	LC	LC+	
GROSS ELECTRICAL CONS.	3.46	3.46	3.76	4.20	3.36	5.2	5.66	
"Pure" electrical cons.	3.25	3.28	3.28	3.28	3.2	3.2	3.2	
"Thermal" electrical cons.	0.09	0.08	0.22	0.54	0.07	0.76	1.07	
"Transport" electrical cons.	0.12	0.1	0.26	0.38	0.09	1.24	1.39	
ELECTRICAL PRODUCTION	5.46	5.48	5.97	5.96	5.45	6.26	6.19	
Hydroelectric	4.32	4.32	4.45	4.45	4.32	4.76	4.76	
PV	0.18	0.18	0.35	0.40	0.19	0.74	0.93	
CHP biogas el	0.02	0.02	0.02	0.03	0.02	0.03	0.03	
CHP/Indiv gas el	0.85	0.86	1.05	0.99	0.83	0.64	0.37	
CHP/DH biomass el	0.02	0.02	0.02	0.02	0.02	0.02	0.02	
CHP/DH gas el	0.08	0.08	0.08	0.08	0.08	0.08	0.07	
STORAGE OPERATION	0.00	0.00	0.00	0.01	0.00	0.06	0.08	
ELECTRICAL	2.04	2.05	2.24	1.79	2.11	1.07	0.54	
IMPORT/EXPORT	2.04	2.03	2.24	1./3	2.11	1.07	0.54	
Export el	2.06	2.07	2.25	1.82	2.13	1.35	1.19	
Import el	0.02	0.02	0.01	0.03	0.02	0.28	0.65	

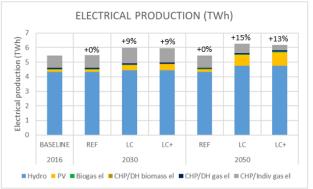
KEY MESSAGES

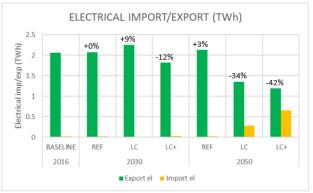
GROSS ELECTRICITY CONSUMPTION

- Increase due to the increase in heat pumps and electric/hydrogen mobility
- 2030: + 9% in LC and + 21% in LC+
- 2050: + 50% in LC and + 64% in LC+

ELECTRICAL PRODUCTION


- Significant increase in PV
- Slight increase in hydroelectric and biogas CHP
- Stable CHP district heating
- Industrial gas CHP up slightly by 2030 and then decreased to 2050


STORAGE OPERATION


Storage operation grows as an "energy reserve" coupled to PV thanks to an expected decrease in costs

ELECTRICAL IMPORT/EXPORT

- 2030 (LC, LC+): small variations
- 2050 (LC, LC+): export decrease, import increase

LC (TWh):

2030: RES PROD (4.84) > EL CONS (3.76)

2050: RES PROD (4.9) > EL CONS (4.2)

LC+ (TWh):

2030: RES PROD (5.55) > EL CONS (5.2)

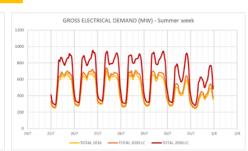
2050: RES PROD (5.74) > EL CONS (5.66)

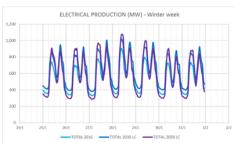
ELECTRICAL PRODUCTION

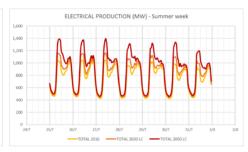
ELECTRICAL BALANCE

6th International Conference on Smart Energy Systems 6-7 October 2020 #SESAAU2020

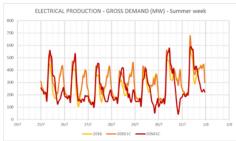



PEAP scenarios: REF vs LC vs LC+


Focus on electric grid: hourly profiles


EnergyPLAN analysis

TECHNOLOGIES



KEY MESSAGES

ELECTRICAL DEMAND

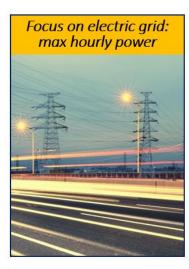
- Important increase related to the electrification of thermal demand and transport.
- Increase more marked in the winter period (higher thermal demand) and in the peaks of thermal demand (HSW, bands 7-8 and 20-21) and charging of electric vehicles (bands 7-11 and 17-21).
- Maximum increase expected in the ranges already critical for "pure" electricity demand (7-11 and 17-20).

ELECTRICAL PRODUCTION

- Small increase: on the one hand PV and hydroelectric productions increase, on the other CHP production decreases.
- Increase more marked in the summer period, corresponding to the greater PV and hydroelectric production, especially in the middle of the day for PV and in bands 7-11 and 17-20 for hydroelectric.

ELECTRICAL BALANCE

 Conditions of marked need for import in the winter, especially in the morning around 6-7 and in the evening around 21, and export in the summer, especially around 11.



PEAP scenarios: REF vs LC vs LC+

EnergyPLAN analysis TECHNOLOGIES

MW MAX	2016		2030		2050			
	BASELINE	REF	LC	LC+	REF	LC	LC+	
GROSS ELECTRICAL CONS.								
"Pure" electrical cons.	740	746	746	746	728	728	728	
Electric vehicle charging	25	21	71	110	18	256	271	
Heat Pump	35	34	90	222	29	313	437	
Electrolysis	0	0	5	6	0	102	126	
ELECTRICAL PRODUCTION								
PV	102	106	202	232	109	432	540	
Hydroelectric	1122	1122	1155	1155	1122	1237	1237	
CHP	417	421	500	475	400	324	215	
STORAGE OPERATION								
Batteries	0	0	23	40	0	145	242	
ELECTRICAL IMPORT/EXPORT								
Export el	860	863	931	884	868	954	995	
Import el	179	179	184	211	167	332	506	

KEY MESSAGES (comparison MW BASELINE 2016 – LC 2030 – LC 2050)

GROSS ELECTRICAL CONSUMPTION

Strong increase in power required for charging electric vehicles (25-71-256), heat pumps (35-90-313) and electrolysis (0-5-102)

ELECTRICAL PRODUCTION

Strong increase in PV power (102-202-432)

STORAGE OPERATION

• Strong increase in storage operation power (0-23-145)

ELECTRICAL IMPORT/EXPORT

• Increase in power required for export (860-931-954) and for import (179-184-332)

GROSS ELECTRICAL CONS. (MW MAX) ■PV ■Hvdro ■CHP STORAGE OPERATION (MW MAX) ■ Export el ■ Import e

The exchange power with the national grid will have to increase by only 11% between 2016 and 2050

Detailed analysis of grid stability (including voltage and frequency) are recommended, particularly in highly urbanized areas

PEAP scenarios: REF vs LC vs LC+

EnergyPLAN analysis

ENERGY CONSUMPTION, RES AND CO2 EMISSIONS

	1990	2016	2030			2050		
		BASELINE	REF	LC	LC+	REF	LC	LC+
ENERGY BALANCE								
SUPPLY (TWh/year)	14.37	19.09	17.84	17.60	16.67	16.35	13.62	12.82
SUPPLY (kWh/inh*year)	32230	35473	30936	30514	28908	26680	22227	20927
Variation 1990 (%)		10.06	-4.01	-5.33	-10.31	-17.22	-31.04	-35.07
Variation 2016 (%)			-12.79	-13.98	-18.51	-24.79	-37.34	-41.01
PRIMARY ENERGY CONSUMPTION		17.05	15.78	15.35	14.85	14.22	12.30	11.69
(TWh/year)								
PRIMARY ENERGY CONSUMPTION (kWh/inh*vear)		31675	27361	26619	25754	23207	20067	19085
Variation 2016 (%)			-13.62	-15.96	-18.69	-26.74	-36.65	-39.75
RENEWABLE ENERGY SOURCES (RES)								
RES Share (% of SUPPLY)	19.1	34.8	36.8	41.2	48.6	39.4	71.7	85.6
CO2 EMISSIONS								
CO2 emission (Mt/year)	3.01	2.89	2.59	2.33	1.95	2.26	0.82	0.41
CO2 emission (t/(inh*year))	6.75	5.36	4.50	4.04	3.37	3.69	1.34	0.67
Variation 1990 (%)		-20.50	-33.34	-40.07	-50.00	-45.31	-80.11	-90.13
Variation 2016 (%)			-16.15	-24.61	-37.11	-31.20	-74.98	-87.58

KEY MESSAGES

- 1. <u>Progressive reduction of primary energy consumption</u> due to the use of more efficient technologies. Compared to Baseline 2016 -16/-19% in LC/LC+ 2030 and -37/-40% in LC/LC+ 2050
- 2. Strong increase in the supply of renewable sources which replace fossil fuels. It reaches 41/49% in LC/LC+ 2030 and 72/86% in LC/LC+ 2050
- 3. LC scenarios allow achieving the EU Energy and Climate Objectives: -40% at 2030 and -80% at 2050 (compared to 1990)
- 4. The LC+ scenarios allow to reach the "TECH RAPID" trajectory: -50% at 2030 and -90% at 2050 (compared to 1990)

PEAP scenarios: REF vs LC vs LC+

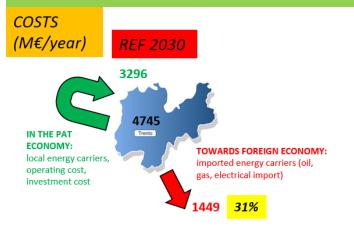
EnergyPLAN analysis

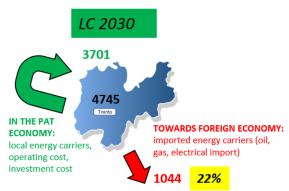
COSTS

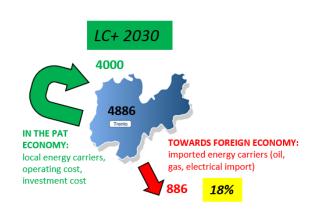
	1990	2016	2030			2050		
		BASELINE	REF	LC	LC+	REF	LC	LC+
COSTS								
Energy carriers cost (M€/year)		1669	1953	1727	1701	2042	1541	1531
Oil cost (M€/year)		727	891	574	515	902	95	58
Gas cost (M€/year)		451	556	469	369	636	227	98
Electrical import cost (M€/year)		1	2	1	2	2	25	61
Total cost imported energy (M€/year)		1179	1449	1044	886	1540	347	217
Total cost imported energy (€/(inh*year))		2191	2513	1810	1536	2513	566	354
Variation 2016 (%)			14.71	-17.35	-29.86	14.74	-74.15	-83.83
Operating cost (M€/year)		454	474	506	519	491	611	608
Investment cost (M€/year)		2143	2318	2512	2666	2583	3240	3384
TOTAL ANNUAL COST (M€/year)		4266	4745	4745	4886	5116	5392	5523
TOTAL ANNUAL COST (€/(inh*year))		7926	8229	8228	8473	8350	8801	9014
Variation 2016 (%)			3.82	3.81	6.89	5.34	11.03	13.72

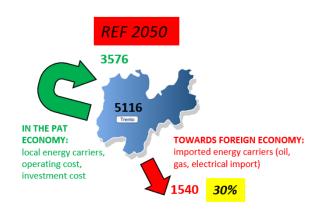
public incentives + private investments

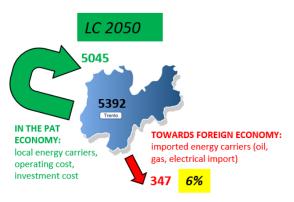
KEY MESSAGES


- 1. REF, LC and LC+ trajectories have similar "total annual cost", close to the Baseline 2016
- 2. By 2050, an increase in "total annual cost" compared to 2016 is within 11% in LC and 14% in LC+
- 3. In the LC and LC+ scenarios, investments in building efficiency and renewable technologies increase while spending on imported energy carriers (oil, gas, electricity import) decreases: THE IMPACT ON THE PAT ECONOMY IS HIGHLY POSITIVE
- 4. An analysis of the investment cost shows an annual ∆ of the LC and LC+ scenarios compared to the REF of 97/174 M€ in 2016-2030 and 425/574 M€ in 2030-2050: necessary public incentives and private investments gradually increasing as the objectives increase (offset by lower costs for imported energy carriers and benefits for local economy and workforce)








EnergyPLAN analysis

Energy 209 (2020) 118378

Contents lists available at ScienceDirect

Energy

journal homepage: www.elsevier.com/locate/energy

Integrated and dynamic energy modelling of a regional system: A cost-optimized approach in the deep decarbonisation of the Province of Trento (Italy)

Diego Viesi ^{a, 1, *}, Luigi Crema ^{a, 1}, Md Shahriar Mahbub ^{b, 1}, Sara Verones ^c, Roberto Brunelli ^c, Paolo Baggio ^d, Maurizio Fauri ^d, Alessandro Prada ^d, Andrea Bello ^d, Benedetta Nodari ^d, Silvia Silvestri ^e, Luca Tomasi ^e

- a Fondazione Bruno Kessler (FBK), Via Sommarive 18, 38123, Povo, TN, Italy
- b Ahsanullah University of Science & Technology (AUST), Love Road 141&142, Tejgaon Industrial Area, Dhaka, 1208, Bangladesh
- C Provincia Autonoma di Trento, Agenzia per le Risorse Idriche e l'Energia (APRIE), Piazza Fiera 3, 38122, Trento, TN, Italy
- ^d Università degli Studi di Trento (UNITN), Via Mesiano 77, 38123, Trento, TN, Italy
- e Fondazione Edmund Mach (FEM), Via E.Mach 1, 38010, San Michele all'Adige, TN, Italy

ARTICLE INFO

Article history: Received 13 March 2020 Received in revised form 3 June 2020 Accepted 11 July 2020 Available online 21 July 2020

Keywords: Integrated energy system modelling Multi-objective evolutionary algorithms Sector coupling Renewable energy Low-carbon economy

ABSTRACT

Since the Kyoto Protocol (1997), the European Union has fought against climate change adopting European, national and regional policies to decarbonise the economy. Moreover, the Paris Agreement (2015) calls 2050 solutions between -80% and -100% of greenhouse gas emissions compared with 1990. Regions have an important role in curbing CO2 emissions, and tailor-made strategies considering local energy demands, savings potentials and renewables must be elaborated factoring in the social and economic context. An "optimized smart energy system" approach is proposed, considering: (I) integration of electricity, thermal and transport sectors, (II) hourly variability of productions and demands, (III) coupling the EnergyPLAN software, to develop integrated and dynamic scenarios, with a multi-objective evolutionary algorithm, to identify solutions optimized both in terms of CO2 emissions and costs, including decision variables for all the three energy sectors simultaneously. The methodology is tested at the regional scale for the Province of Trento (Italy) analyzing a total of 30,000 scenarios. Compared to the Baseline 2016, it is identified: (I) the strategic role of sector coupling among large hydroelectric production and electrification of thermal and transport demands (heat pumps, electric mobility), (II) slight increases in total annual cost, +14% for a -90% of CO2 emissions in 2050.

© 2020 Elsevier Ltd. All rights reserved.

Fondazione Bruno Kessler - www.fbk.eu

Diego Viesi*a, Luigi Cremaa, Md Shahriar Mahbubb, Sara Veronesc, Roberto Brunellic, Paolo Baggiod, Maurizio Faurid, Alessandro Pradad, Andrea Bellod, Benedetta Nodarid, Silvia Silvestrie, Luca Tomasie

*Corresponding Author, viesi@fbk.eu

^aFondazione Bruno Kessler (FBK), Via Sommarive 18, 38123 Povo (TN), Italy

^bAhsanullah Univeristy of Science & Technology (AUST), Love Road 141&142, Tejgaon Industrial Area, Dhaka-1208, Bangladesh

^cProvincia Autonoma di Trento, Agenzia per le Risorse Idriche e l'Energia (APRIE), Piazza Fiera 3, 38122 Trento (TN), Italy

^dUniversità degli Studi di Trento (UNITN), Via Mesiano 77, 38123 Trento (TN), Italy

^eFondazione Edmund Mach (FEM), Via E.Mach 1, 38010 San Michele all'Adige (TN), Italy

Powered by

