Open models of optimal system operation in central vs. decentral heat supply

— Jann Launer, Marcus Schluzy, Jakob Wolf, Silke Köhler, Christoph Pels Leusden

2019-09-10 Copenhagen

© Reiner Lemoine Institut
- Central fossil (natural gas) CHP,
- central peak load boiler
- central thermal storage,
- 1 primary,
- 8 sub-networks.

“How to include renewable heat using Power-to-Heat?”
Open energy modeling framework
Open energy modeling framework – oemof

https://oemof.org
https://github.com/oemof

Next developer meeting
2019/12/04-06 in Berlin
oemof_heat

Project funded by BMWi

Duration: 3 years (2017-2020)
- Space heating,
- District heating networks,
- Special temperature levels.

Developing heat components for simulation and optimization models
- Heat pumps,
- District heating networks,
- Solar thermal collectors,
- Thermal storages.
Case study
Case study – District heating system

Fictitious system

- 1 primary network,
- 8 sub-networks,
- Aggregated synthetic thermal load profiles for consumers in sub-networks.

Serve heat demand at minimal cost while maximizing revenues through electricity sale.
Assumptions

- Linear model,
- cost assumptions,
- electricity spot price timeseries,
- aggregated load profiles for sub-networks,
- constant losses in DHN pipes,
- heat source at constant temperature level 10°C,
- temperature level in subnets constant, thus constant COP for heat pumps throughout the year,
- perfect foresight,
- minimize costs, maximize revenues.
Scenario overview

Setup scenarios along three main axes:

<table>
<thead>
<tr>
<th>System configuration</th>
<th>Regulatory framework</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decentral heat pumps</td>
<td>Status quo</td>
<td>2018</td>
</tr>
<tr>
<td>(Central resistive PtH)</td>
<td>Flex Friendly</td>
<td>2030</td>
</tr>
<tr>
<td>(No PtH)</td>
<td></td>
<td>2050</td>
</tr>
</tbody>
</table>
Scenario: Status Quo – Energy carrier prices
Scenario: Status Quo – Energy carrier prices

Sources:
- Electricity spot market price [2]
- Gas price [3]
- Grid usage fees [4]
- EEG levy [5]
- Other taxes §3 StromStG; §2 KAV
Scenario: Status quo | 2018

- Heat pumps not used.
- CHP serves base load,
- gas boiler serves peak load in winter.
- Thermal storage allows CHP to pause in hours of low electricity prices in summer.
Scenarios: Status quo | 2018, 2030, 2050

Economic operation of heat pumps in 2050.
~ 50% of heat produced by heat pumps in 2050,
Significant emission reduction.
Scenario: Status Quo – Energy carrier prices

Status quo

Sources:
- Electricity spot market price [2]
- Gas price [3]
- Grid usage fees [4]
- EEG levy [5]
- Other taxes §3 StromStG; §2 KAV
Scenario: Flex friendly – Energy carrier prices

No levies and lower grid usage fees, introduce CO2-tax.

Sources:
- Electricity spot market price [2]
- Gas price [3]
- Grid usage fees [4]
- EEG levy [5]
- Other taxes §3 StromStG; §2 KAV Graichen and Lenck 2018

Flex friendly
Scenario: Flex friendly – Energy carrier prices

When spot price < 0
Taxes significantly reduced.
Network charges = 0.
Scenario: Flex friendly | 2018

- Heat pumps serve as main heat producer.
- CHP operates when heat load is high and while electricity prices are high.
- Storage charged by CHP.
- Gas boiler is used when electricity production is not economic.
Scenarios: Flex friendly | 2018, 2030, 2050

- Heat pumps serve base load.
- CHP/Gas boiler serve peak load.
- Increasing usage of gas boiler in 2030, 2050.
- Emissions are reduced significantly.
Conclusion

- Heat pumps can play an important role in district heating systems.
- Economic operation is sensitive to energy carrier price structure and revenues of electricity sale.
- Heat pumps not economic under status quo assumptions in 2018.
- Flex-friendly price structure allows economic operation.
- Roles are changed: Heat pumps serve base load, CHP switches to intermittent operation. CHP operation replaced by gas boiler at low electricity prices.
- Emissions can be reduced significantly.

Code and data will be published online together with the journal publication.
Let’s discuss!

License

Except where otherwise noted, this work and its content (texts and illustrations) are licensed under the Attribution 4.0 International (CC BY 4.0)

See license text for further information.

Please quote as: “Open models of optimal system operation in central vs. decentral heat supply” © Reiner Lemoine Institut | CC BY 4.0

Jann Launer
Tel: +49 (0)30 1208 434 77
E-Mail: jann.launer@rl-institut.de
Web: http://www.rl-institut.de
Sources

Electricity prices
Specific emissions

Specific emissions of grid electricity

- Status quo 2018
- Flex friendly 2018
- Status quo 2030
- Flex friendly 2030
- Status quo 2050
- Flex friendly 2050

Specific emissions [tCO2/MWh]
Scenario: Status quo/Flex friendly | 2018

Status quo 2018

Flex friendly 2018
Scenario: Status quo/Flex friendly | 2050

Status quo 2050

- **CHP**
- **Gas boiler**
- **Heat pump**
- **Discharge storage**

Flex friendly 2050

- **CHP**
- **Gas boiler**
- **Heat pump**
- **Discharge storage**