Design of renewable and system-beneficial district heating systems using dynamic emission factors for grid-sourced electricity in optimization models

Johannes Röder, David Beier, Benedikt Meyer, Tino Mitzinger, Joris Nettelstroth, Torben Stührmann, Edwin Zondervan

aDepartment Resilient Energy Systems, University Bremen
bSteinbeis-Innovationszentrum energie+, Braunschweig
cLaboratory of Process Systems Engineering, University Bremen
Background

Research Project QUARREE100

- Resilient, scalable and transferable energy system solutions for built-up urban districts
- High share of renewable energies in all energy sectors
- Integration of urban districts in the overall energy system

Urban district Rüsdorfer Kamp (Heide)

- Flexible and system-beneficial design of district energy system in order to use excess wind energy

Source graphic: (2)
Background

Electrical power system

Exogenous model parameter for electricity:
- price [€/kWh]
- emission factor [kg/kWh]

District-Energy-System

Optimization model

\[\text{min} \quad \text{Costs} \]
\[\text{s.t.} \quad \text{Emission} \leq \text{Limit} \]

Objectives
- High share of renewable energies
- Support integrating volatile renewable energies
- Low costs
- Optimal investment decisions in local energy conversion and storage technologies
- Optimal unit commitment
Research issue

Exogenous model parameter for electricity:
- price [€/kWh]
- emission factor [kg/kWh]

Optimization model

\[
\begin{align*}
\text{min} & \quad \text{Costs} \\
\text{s.t.} & \quad \text{Emission} \leq \text{Limit}
\end{align*}
\]

• Optimal investment decisions in local energy conversion and storage technologies
• Optimal unit commitment

Challenges
1. Emission factor of grid-sourced electricity depends on fluctuating renewable energies.
2. How can a grid supportive design and behavior of the district energy system be achieved?

Approach
1. Using time-dependent emission factors
 \(\rightarrow\) How does the energy system design differ?
 \(\rightarrow\) When does it matter?
2. Considering local and regional excess of renewable energies due to congestions within the grid
 \(\rightarrow\) Dynamic (= time-dependent) local emission factor as design parameter
Energy system model

- Linear investment- and unit commitment optimization model (LP)
- 1 year, 1 hour time resolution
- Technology data based on actual market data
- Commodity prices following German prices
- Demand time-series based on real-world case
 - Peak load heat =~2 MW
 - Annual heat demand =~5 GWh
 - Electricity demand =~1.1 GWh
- Dynamic (time-dependent) emission factor of grid-sourced electricity
Emission factor of grid-sourced electricity (Germany 2018)

Reduction of emission factor at times of excess

Local and regional cut-off of renewable energy (historical data)

- Feed-in management at next HV/MV transformer station from DSO
- Feed-in management from TSO within region
 - Periods with low emission factor increase

(1) Kleiner et al., Agora Energiewende 2019
By using dynamic emission factors for grid-sourced electricity, lower emission at least costs can be achieved.
By using dynamic emission factors for grid-sourced electricity, lower emission at least costs can be achieved.

Considering renewable cut-off energy, more than 50% lower emissions can be achieved.
By using dynamic emission factors for grid-sourced electricity, lower emission at least costs can be achieved.

Considering renewable cut-off energy, more than 50% lower emissions can be achieved.
Results – example of investment decisions and unit commitment

<table>
<thead>
<tr>
<th>@Emission_limit = 84.8 g/kWh</th>
<th>Local emission factor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dynamic</td>
</tr>
<tr>
<td>Emission Limit [g/kWh]</td>
<td>84.8</td>
</tr>
<tr>
<td>Total Costs [ct/kWh]</td>
<td>8.56</td>
</tr>
<tr>
<td>Investment Costs [ct/kWh]</td>
<td>6.12</td>
</tr>
<tr>
<td>Variable Costs [ct/kWh]</td>
<td>2.44</td>
</tr>
<tr>
<td>Average EF* [g/kWh]</td>
<td>113.7</td>
</tr>
<tr>
<td>GSC<sub>abs</sub>* (EF*)<sup>1</sup> [-]</td>
<td>0.321</td>
</tr>
</tbody>
</table>

*EF: Emission factor of grid-sourced electricity

**GSC_{abs}*: Grid-Support-Coefficient (absolute) with emission as weighting factor

1According Klein et. al. https://doi.org/10.1016/j.apenergy.2015.10.107

Röder et al.
Design of renewable and system-beneficial district heating systems
5th International Conference on Smart Energy Systems ● Copenhagen, 10-11 September 2019 ● #SESAAU2019
Summary

- Dynamic emission factors achieve lower emission at least costs
 → Case study: 53.6% lower emission possible (local emission factor)
- Variance of the emission factor determines the impact on the design decisions. Thus, dynamic emission factors are important...
 → ... during the transformation of the electricity system.
 → ... in regions with local congestions due to fluctuating renewable energies.
- Dynamic local emission-factors is a promising concept for designing low-emission and system-beneficial district energy systems.
open source modelling framework oemof

https://oemof.org/

https://github.com/oemof/
Thank you for your attention!

Partner Research Project QUARREE100

Funding Notes

This work was developed in the context of the research project "QUARREE 100 – Resiliente, integrierte und systemdienliche Energieversorgungssysteme im städtischen Bestandsquartier unter vollständiger Integration erneuerbarer Energien" (grant number: 03SBE113B). The authors thank the project executing organization Projektträger Jülich (PtJ), the Federal Ministry for Economic Affairs and Energy (BMWi) and the Federal Ministry of Education and Research (BMBF).