

### **Smart Energy Systems Conference 2019**

### Poul Skjærbæk, Siemens Gamesa Renewable Energy 11. September, 2019



**Restricted © Siemens Gamesa Renewable Energy A/S** 

More than 10% of global CO2 emissions come from hard-to-abate sectors, where we need some type of electrofuel to replace the fossil fuel component.



Source: Davis et al.: Net-zero emissions energy systems, 2018. Featured in Inside Climate News: These Are the Toughest Emissions to Cut, and a Big Chunk of the Climate Problem, 28.06.2018



Restricted © Siemens Gamesa Renewable Energy A/S

Luckily there are several projects underway to utilize electrofuels to decarbonize the Steel, fertilizer, Aviation and Shipping industry.



Sources: Recharge, 26.08.2019, Yara.com, 13.02.2019,, Recharge, 17.06.2019, Global Maritime Forum, 10.05.2019



## Application and Market: evaluation of Hydrogen application across major transport applications

| Transport type  |           | Predicted end-fuel                                   |  |  |  |
|-----------------|-----------|------------------------------------------------------|--|--|--|
| Light transport | 00        | kWh                                                  |  |  |  |
| Cars            |           | kWh + <b>H</b> <sub>2</sub>                          |  |  |  |
| Trucks          | · · · · · | kWh + $H_2$ + N $H_3$ + Biofuels                     |  |  |  |
| Trains          | 000       | kWh                                                  |  |  |  |
| Ships           |           | kWh + N <b>H</b> <sub>3</sub>                        |  |  |  |
| Air planes      | ➛         | kWh + Carbon based synthetic fuel ( $\mathbf{H}_2$ ) |  |  |  |

#### Take out

- Electricity is dominant energy source for light weight transport and short hauls
- Chemicals evaluated dominating energy source for heavy transport, marine transport and longer hauls.
- Hydrogen (H<sub>2</sub>) component across dominating chemical fuel types

The **ideal energy-source** to cover future need is a **Renewable hybrid**, producing  $H_2$  and kWh



### Shipping: The substitute products all have limitations - breakthroughs are needed





• Requires Carbon Capture Storage to avoid supply chain emissions.

Blue



# Why Hydrogen? Conversion technology is proven – however, not in industry scale and in combination with wind turbine technology





In 2018 the shipping sector (accounting for 2,6% of Worlds CO<sub>2</sub> emissions) agreed to reduce  $CO_2$  emissions by >40% by 2030 targeting 85% by 2050



### **Carbon emissions from global shipping** to be halved by 2050, says IMO

| •                                                    |                                 |  |  |  |  |  |
|------------------------------------------------------|---------------------------------|--|--|--|--|--|
| icct                                                 | GREENHOUSE GAS EMISSIONS        |  |  |  |  |  |
| THE INTERNATIONAL COUNCIL<br>ON CLEAN TRANSPORTATION | FROM GLOBAL SHIPPING, 2013-2015 |  |  |  |  |  |

0 

Table 6. Shipping CO, emissions compared to global CO, emissions, 2007-2015

|                                      | 3rd IMO GHG Study (million tonnes) |                      |                    |                    |                      |                    |                    | ICCT (million tonnes) |                    |  |
|--------------------------------------|------------------------------------|----------------------|--------------------|--------------------|----------------------|--------------------|--------------------|-----------------------|--------------------|--|
| Source                               | 2007                               | 2008                 | 2009               | 2010               | 2011                 | 2012               | 2013               | 2014                  | 2015               |  |
| Global CO <sub>2</sub><br>emissions' | 31,959                             | 32,133               | 31,822             | 33,661             | 34,726               | 34,968             | 35,672             | 36,084                | 36,062             |  |
| International<br>shipping            | 881                                | 916                  | 858                | 773                | 853                  | 805                | 801                | 813                   | 812                |  |
| Domestic<br>shipping                 | 133                                | 139                  | 75                 | 83                 | 110                  | 87                 | 73                 | 78                    | 78                 |  |
| Fishing                              | 86                                 | 80                   | 44                 | 58                 | 58                   | 51                 | 36                 | 39                    | 42                 |  |
| <b>Total shipping</b><br>% of global | <b>1,100</b><br>3.5%               | <b>1,135</b><br>3.5% | <b>977</b><br>3.1% | <b>914</b><br>2.7% | <b>1,021</b><br>2.9% | <b>942</b><br>2.6% | <b>910</b><br>2.5% | <b>930</b><br>2.6%    | <b>932</b><br>2.6% |  |

\* Global CO, estimates include CO, from fossil fuel use and industrial processes (EDGAR, 2017).

#### The challenge:

Pathways for international shipping's CO2 emissions (Mtons):



Source: IMO GHG Strategy, 2018, BloombergNEF



### Shipping Market shows significant potential; ~200MW to fuel 1 Triple E vessels









### **Marine Fuel Oil Price points**



Restricted © Siemens Gamesa Renewable Energy A/S Source: Shipandbunker.com. Port of Rotterdam prices, 11.07.2019: 416 \$/ton / 377 €/ton. LSMGO: 589 \$ / ton / 535 €/ton. 11.07.2019. Jan Rindbo quote, Newsarticle is From Børsen.dk, 16.01.2019.

