

4DH

DEVELOPING INNOVATIVE BUSINESS MODELS FOR REDUCING RETURN TEMPERATURES IN DISTRICT HEATING SYSTEMS: APPROACH AND FIRST RESULTS

5th International Conference on Smart Energy Systems Copenhagen, 10-11 September 2019

Paolo Leoni, Roman Geyer, Ralf-Roman Schmidt AIT Austrian Institute of Technology GmbH, Vienna, Austria

OUTLINE

- Research motivation
- Approach of the Austrian project T2LowEx
- First results:
 - Secondary-side measures to reduce return temperatures
 - Cost-benefit analysis
 - Key elements of innovative business models
- Observations and next activities

RESEARCH MOTIVATION WHY NEW BUSINESS MODELS?

- Need for lower operating temperatures in existing systems:
 - Well-known technical, economical, and environmental advantages
 - Key enablers for decarbonization (increased efficiency and share of renewable)

RESEARCH MOTIVATION WHY NEW BUSINESS MODELS?

- Need for lower operating temperatures in existing DH systems
- DH operators have poor/no margin to act on the return temperature:
 - Return T is consequence of <u>secondary side</u> behavior → Reasons for (unexpected) high return T are difficult to diagnostic for the network operator
 - Countermeasures are difficult to implement: person supposed to act and/or to bear the investment (building owner) often different than person profiting from lower return T (operator)

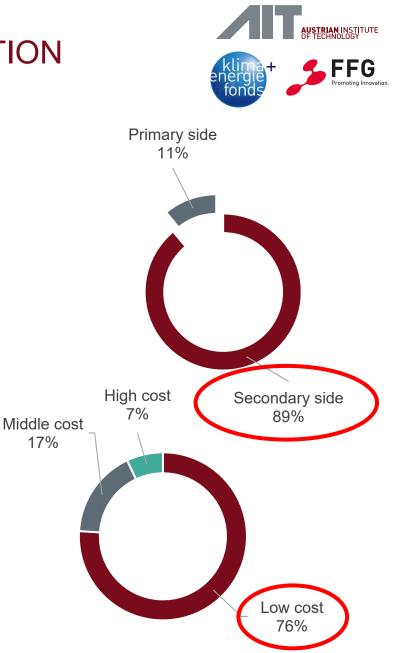
Need for new BM incentivizing secondary-side measures and network-friendly behaviors

T2LowEx – TRANSFORMATION TO LOW-EXERGY SYSTEMS

- Funds: Climate and Energy Funds
- Programme: Energieforschungsprogramm 2016
- Project number: 858747
- Coordinator: TU Vienna

- Objectives:
 - Systematical analysis of potential for reducing return temperatures in existing networks
 - Development of innovative business models incentivizing secondary-side measures for decreasing the return temperatures
- Duration: April 2017 March 2021

DEVELOPMENT OF NEW BM APPROACH

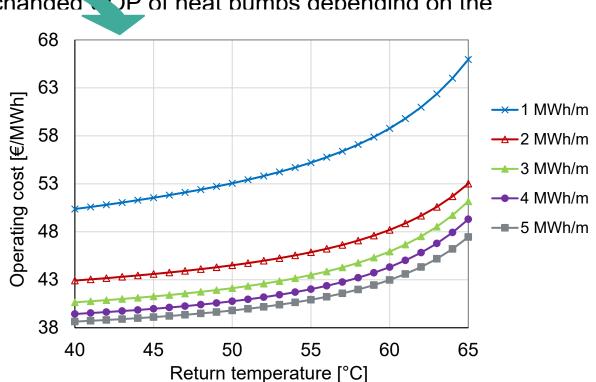


- <u>Techno-economic evaluation</u> real-data analysis to identify costs and benefits of measures to reduce return T
- <u>Analysis of Austrian DH framework</u>: PESTLE (Politic, Economic, Sociocultural, Technologic, Legal, Environmental)
- Literature review of BM (including other countries and power sector)
- <u>Stakeholders' mapping and engagement</u>: workshops and interviews
- Development of new BM and SWOT analysis

Target of BM: sharing the created value among the players in a way incentivizing virtuous behaviours

TECHNO-ECONOMIC EVALUATION REAL-DATA ANALYSIS

- Operating data from 2 urban and 3 rural DH systems
- 113 substations with return T higher than expected
- Most of the faults on secondary-side: design, installation, operation, equipment failures
- Most countermeasures require low investment / low personnel involvement:
 - De-aerate the substation
 - Remove bypasses / wrong connections
 - Correct customer's behavior
 - Tune the substation CTRL
 - Replace the primary (substation) valve
 - Hydraulic balance


TECHNO-ECONOMIC EVALUATION EFFECTS OF LOWER RETURN T

Tool under development for calculating the effects on:

- **Production plants**: increased electricity from steam-based CHP units, increased efficiency of solar thermal, geothermal, flue-gas condensation, waste heat integration, changed OP of heat pumps depending on the hydraulic integration 68
- **Distribution network**: power), more flexibility
- Buildings: less noisy fl
- Possible indirect efference measures are taken (e. sources)

Example assuming supply at 85 °C → savings from 0.10 to 1.10 €/(°C·MWh)

BUSINESS MODELS CHALLENGES AND TARGETS IN DH

Challenges of Austrian DH:

- Current BM are unable to efficiently <u>involve citizens in the transition towards</u> <u>low T</u> (even motivated)
- Cases of <u>mistrust</u> from the users: DH perceived as limiting the freedom of decision and thermal independency
- Cases of higher costs than independent heating

Targets of innovative BM:

- Making customers aware of their key-role in determining operating costs and energy efficiency
- Allowing customers more action on the bill (new tariff structure transparent and with predictable costs, tariff for prosumers...)
- Reduce the costs of the whole chain and share the created value in a fair way incentivizing virtuous behaviours
- Allow innovative financing and participation forms

BUSINESS MODELS BEST-PRACTICE REVIEW

International success stories of BM encouraging grid-friendly behaviours:

- <u>Good and close customer relationship</u> including periodic surveys on installations and instructions about performance improvements / savings
- <u>Involvement of local authorities</u> (social and environmental drivers) in regulation, granting, financing (e.g. as guarantor for loans)
- <u>Citizens' participation</u> through non-profit cooperatives (community-owned, collective, crowdfunding)
- <u>Technology providers' participation</u>
- <u>Flexible tariff</u> incentivizing load shifting
- Tariff with flow component or bonus-malus based on return T

NEW BM FIRST RESULTS FOR AUSTRIAN DH

New key-partners	Industries and data centers with waste heat, contractors, local authorities.
New key-activities	Implementation of efficient fault detection systems. Periodical audits at customer installations, counseling for customers with suboptimal plants or wrong behavior. Also, counseling for (the largest) heat users to provide tailor-made incentives. Training of planners and installers.
New key-resources	New financing mechanisms: leasing, participation of customers/citizens and of technology providers, insurances, funds, loans with (public) third guarantor.
New services	Energy saving contracts, possibility of return-line connection (e.g. for floor heating) with reduced tariff.
New communication channels	Social media, communities, apps with possibility of surveys, customers' feedback, market monitoring.
New tariff systems	Bonus-malus, flow component, flexible tariff, eco-tariff, prosumer tariff. Complete transparency and predictable costs requested.

SUMMARY

- Several "low-hanging fruits" in reducing return T
- Opportunities for lower return T are very frequently on the customer's side
- Main challenges:
 - Reasons for inefficiencies are difficult to localize/identify by the operator
 - Low customers' awareness, missing knowledge causes lack of motivation for fault removal
 - Investment / profit dilemma
 - Even more complicated in presence of additional parties (rental houses, intermedium contracts...)
- Prerequisites of successful innovative BM:
 - Customer-oriented communication
 - Use of new financing tools
 - Fair sharing of the created value to incentivize virtuous behaviors

NEXT STEPS

- Define exact players and roles in agreement with DH operators
- SWOT analysis of the BM
- Consider possible advantages by implementing digital technologies:
 - More efficient fault detection and diagnosis
 - Give the users a more concrete and real-time perception of their behavior: positive and negative effects on costs and energy efficiency
 - Operation optimization
 - Flexible (hour depending) tariff for consumers and prosumers

THANK YOU!

PAOLO LEONI

AIT Austrian Institute of Technology GmbH Giefinggasse 2 | 1210 Vienna | Austria T +43 50550-6361 | M +43 664 88256118 paolo.leoni@ait.ac.at | www.ait.ac.at

Fonden Energi- & Miljødata www.emdfonden.dk

