Power-To-Gas potential for energy flexibility of grid-connected and off-grid geographical islands

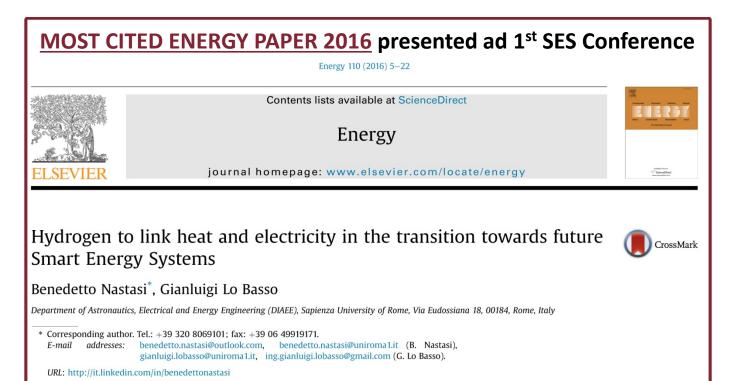
Benedetto Nastasi & Davide Astiaso Garcia

Outline

- Background
- H2020 GIFT
- Power To Gas (P2G)
- Research Questions
- Methodology
- Results
- Conclusions
- References

Background - 2011/2015

- 25% is the maximum integrable RES share today
- RES intermittency, e.g. PV peak, overcomes 25%
- ✓ Storage & sector coupling to firm RES capacity
- Long term contracts signed for fossil fuel supply
- Capillary Gas Grid infrastructure
- ✓ RES-based solutions for decarbonizing supply
- → Power-to-Gas for Electro-Fuels production



Background – 2011/2015

https://doi.org/10.1016/j.energy.2016.03.097

Background - 2019

HOME / MEDIA / PRESS RELEASES / 2019 / SNAM: EUROPE'S FIRST SUPPLY OF HYDROGEN AND NATURAL GAS BLEND INTO TRANSMISSION NETWORK TO INDUSTRIAL USERS

20132012201120102009

2007

SNAM: EUROPE'S FIRST SUPPLY OF HYDROGEN AND NATURAL GAS BLEND INTO TRANSMISSION NETWORK TO INDUSTRIAL USERS

O1 April 2019 - 14:20 CEST

APR

TAGS hydrogen, natural gas, transmission network, industrial users

Experiment launch in Southern Italy: hydrogen is a key technology for decarbonisation and storage of renewable sources

H2020 GIFT – Project

H2020 GIFT – Procida Case Study

H2020 GIFT – Procida Case Study

- Local energy production is negligible
- Congestion on power cable to the mainland
- ✓ Fostering distributed and sustainable energy
- Reliable Gas Grid present
- New business models for inter-sectorial flexibility
- ✓ Prosum(ag)ers interacting with market
- → Power-to-Gas to offer Power Flexibility

H2020 GIFT – Data availability

Building 1

YEAR	ACTIVE ENERGY [kWh]	REACTIVE ENERGY [kVArh]	MAXIMUM POWER
2019	31,212	19,466	34.8
2018	16,949	25,560	27.5
2017	51,027	9,376	29.0

Building 2

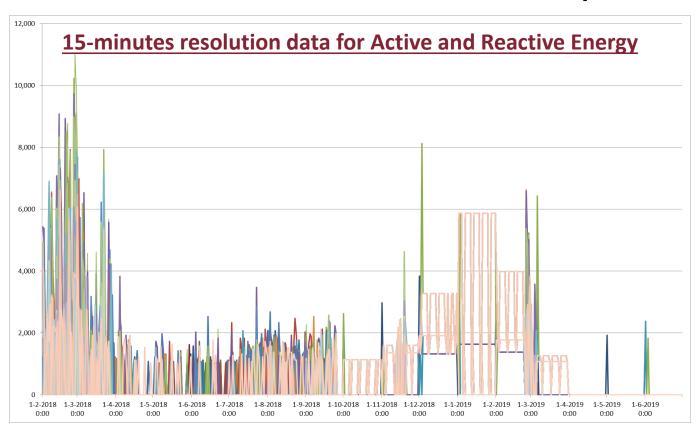
YEAR	ACTIVE ENERGY [kWh]	REACTIVE ENERGY [kVArh]	MAXIMUM POWER
2019	24,618	22,375	46.4
2018	41,129	59,180	42.0

Building 3

YEAR	ACTIVE ENERGY [kWh]	REACTIVE ENERGY [kVArh]	MAXIMUM POWER
2019	3,213	2,876	6.6
2018	5,315	4,186	6.0
2017	3,723	1,134	5.0

Building ...

	YE.4	YEAR ACTIVE		CTIVE ACTIV					
			ΥE			ACTIVE	М	VAIMITIM	
.6	2	2		YEAR	ACTIVE ENERGY	REACTIVE ENERGY		MAXIMUM POWER	
.0	2		2		[kWh]	[kVArh]			
.0	2	2	2	2019	2,155		971		7.1
		2	2	2018	19,386		6,227		23.0
Power	ed by		_	2017	24,622		3,975		24.0



H2020 GIFT – Data availability

Research Questions

What Reliability could be provided by RES-excess based synthesis considering the different sectors and their demand (fuel, heat, power)?

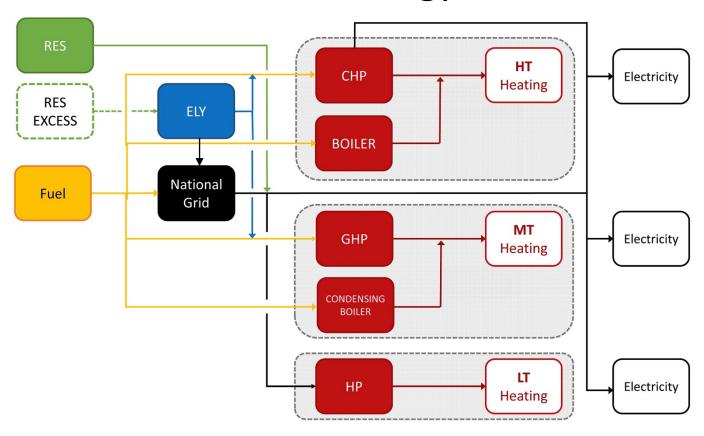
Electrolysers as sector coupling tool

What changes in Congestion and CO₂ emission could be achieved by handling RES-based fuel?

Potential for NG blending or reversible SOC use

Methodology

- Hour quarterly resolution data from DSOs
- Reversible Fuel Cell for H₂ production or use
- ✓ Interacting with Gas Grid or supplying electricity
- Electricity market trends and RES share included
- Behaviour of different sizes of H₂ components
- ✓ Using the available RES to secure the system
- → Power-to-Gas viable to offer Energy Flexibility



Methodology

Methodology – Scenarios

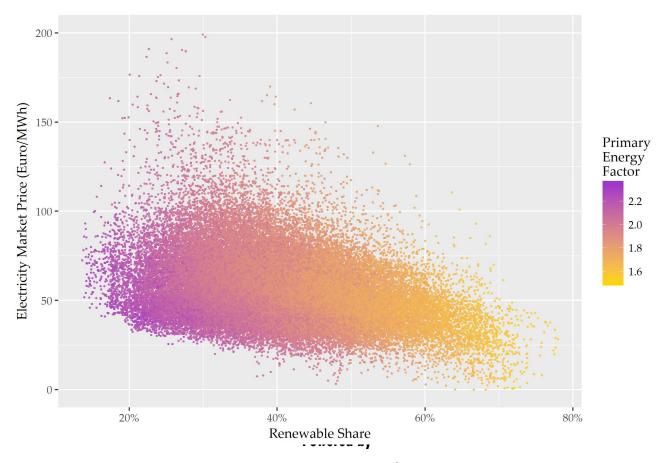
Electrical and Heating demand of several buildings Five scenarios for Integrating Solar Energy:

- BAU Current fossil based generation & Grid
- PV Photovoltaics installed on all the Buildings
- ELY & FC Reversible Electrolyser & Fuel Cell
- ELY & H2NG Solar H₂ injected into the Gas Grid
- ELY & H2NG & FC Combination of FC and H2NG

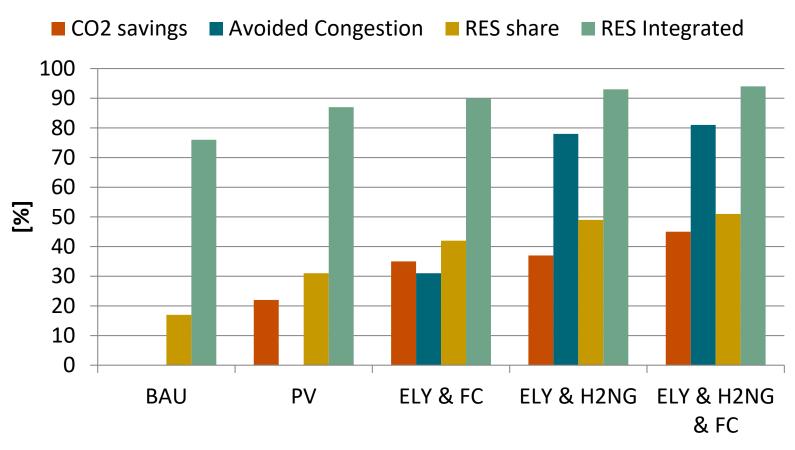
Key Performance Indicators: Avoided CO₂, Avoided Congestion, RES share, RES integrated

Methodology – Electricity Market in Italy

- F1 peak hours during a working day, from Monday to Friday.
- **F2** the near-peak demand, from Monday to Saturday.
- **F3** the off-peak demand.



Methodology – Electricity Performance

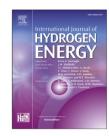


Results

Conclusions

- Hydrogen plus Natural Gas for the transition
- Avoiding congestion by interacting with Gas Grid
- ✓ Partial substitution as ready solution
- Solar energy is already enough to H2NG @5%
- Solar Hydrogen for RES capacity firming
- ✓ Interaction between heat and electricity
- → Dedicated RES-based electro-fuel for Grid security

References


INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 42 (2017) 23933-23951

Available online at www.sciencedirect.com

ScienceDirect

Power-to-Gas integration in the Transition towards Future Urban Energy Systems

Benedetto Nastasi ^{a,*}, Gianluigi Lo Basso ^b

- ^a Department of Architectural Engineering and Technology (AE+T), TU Delft University of Technology, Julianalaan 134, 2628 BL, Delft, The Netherlands
- ^b Department of Astronautical, Electrical and Energy Engineering (DIAEE), Sapienza University of Rome, Via Eudossiana 18, 00184, Rome, Italy

https://doi.org/10.1016/j.ijhydene.2017.07.149

References

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 43 (2018) 23076-23090

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/he

Power-to-gas leverage effect on power-to-heat application for urban renewable thermal energy systems

Benedetto Nastasi ^{a,*}, Gianluigi Lo Basso ^b, Davide Astiaso Garcia ^b, Fabrizio Cumo ^c. Livio de Santoli ^b

- ^a Department of Architectural Engineering and Technology (AE+T), TU Delft University of Technology, Julianalaan 134, 2628 BL Delft, the Netherlands
- ^b Department of Astronautical, Electrical and Energy Engineering (DIAEE), Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
- ^c Department of Planning, Design and Technology of Architecture (PDTA), Sapienza University of Rome, Via Flaminia 72, 00196 Rome, Italy

https://doi.org/10.1016/j.ijhydene.2018.08.119

References

B978-0-12-814853-2.00002-3, 00002					
CHAPTER 2					
CHAPTER 2					
Under the BOD					
Hydrogen policy, market, and R&D					
projects					
Benedetto Nastasi TU Delft University of Technology, Delft, Netherlands					
Contents					
2.1 Hydrogen in the national policies	1				
2.2 Research & development in solar hydrogen production	3				
2.3 Market and cost metrics of solar hydrogen production	6				
2.3.1 Market of solar hydrogen production	7				
2.3.2 Cost metrics of solar hydrogen production	9				
References	11				

https://www.elsevier.com/books/solar-hydrogen-production/calise/978-0-12-814853-2

Thank you for your attention!

For any suggestion or further information please contact:

benedetto.nastasi@outlook.com

researchgate.net/profile/Benedetto_Nastasi/

