The potential of biogas in a 100% renewable energy system in Denmark

Authors: Andrei David
Iva Ridjan Skov
Brian Vad Mathiesen

Powered by
BioCat
Roslev

Aalborg University
DENMARK

UN environment
DISTRICT ENERGY IN CITIES INITIATIVE

Innovation Fund Denmark

4DH
Applications for biogas

Power and district heat

Industry

Metan (PJ/year)

Source: GASEnergi, Danish Gas Association, June 2018

Powered by

5th International Conference on Smart Energy Systems
Copenhagen, 10-11 September 2019
#SESAAU2019
A reference model is set up for Denmark 2050

• 100% renewable
• No biogas
• Methane produced via biomass gasification and biomass hydrogenation
• Limited excess electricity
• Technical simulation
• Derived from IDA Energy Vision 2050
• EnergyPLAN use in the analysis
Biogas as a fuel and its derivatives

Feedstock

- Biogas
- Hydrogen

Conversion

- Purification
- Methanation

End fuel

- Biogas
- Biomethane
- E-methane

5th International Conference on Smart Energy Systems
Copenhagen, 10-11 September 2019
#SESAAU2019
Biogas utilization scenarios

- Power plants: Replacing methane from biomass gasification
- Industry: Replacing methane from biomass hydrogenation
- Transport: Replacing liquid fuel from biomass hydrogenation
PES and biomass consumption

- 59.73 TWh PES for Ref
- 58.47 TWh PES for Power and heat
- 63.49 TWh PES for Industry
- 58.47 TWh PES for Power and heat
- 63.49 TWh PES for Industry
- 62.44 TWh PES for Transport
- 56.75 TWh PES for Power and heat
- 61.74 TWh PES for Industry
- 60.77 TWh PES for Transport

Powered by:
- reINVEST
- sEEnergies
- Innovation Fund Denmark
- UN Environment
- District Energy in Cities Initiative
- Fonden Energi & Miljødata
Energy system costs

*Biomass price 6 €/GJ

<table>
<thead>
<tr>
<th>Marginal system cost difference [M€]</th>
<th>Biogas</th>
<th>Biomethane</th>
<th>E-methane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power plants</td>
<td>-133</td>
<td>-107</td>
<td>51</td>
</tr>
<tr>
<td>Industry</td>
<td>-174</td>
<td>-147</td>
<td>8</td>
</tr>
<tr>
<td>Transport</td>
<td>-171</td>
<td>-11</td>
<td>-20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Biogas feedstock prices [€/GJ]</th>
<th>Power plants</th>
<th>Biomethane</th>
<th>E-methane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>0</td>
<td>-133</td>
<td>-107</td>
<td>51</td>
</tr>
<tr>
<td>4.5</td>
<td>3</td>
<td>29</td>
<td>155</td>
</tr>
<tr>
<td>5.2</td>
<td>24</td>
<td>50</td>
<td>171</td>
</tr>
<tr>
<td>5.9</td>
<td>46</td>
<td>72</td>
<td>188</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Displacing</th>
<th>Gasified biomass</th>
<th>Gasified biomass + H₂</th>
<th>Gasified biomass</th>
<th>Gasified biomass + H₂</th>
<th>Liquid bio-electrofuels</th>
<th>Gasified biomass</th>
<th>Gasified biomass + H₂</th>
<th>Liquid bio-electrofuels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Gasified biomass</td>
<td>-133</td>
<td>-107</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gasified biomass + H₂</td>
<td>3</td>
<td>29</td>
<td>155</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gasified biomass</td>
<td>24</td>
<td>50</td>
<td>171</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gasified biomass + H₂</td>
<td>46</td>
<td>72</td>
<td>188</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Powered by

- reINVEST
- sEEnergies
- Fonden Energi- & Miljødata
- Innovation Fund Denmark
- 4DH
- Aalborg University
- UN Environment
- District Energy in Cities Initiative
Energy system costs

*Biomass price 8 €/GJ

<table>
<thead>
<tr>
<th>Marginal system cost difference [M€]</th>
<th>Biogas</th>
<th>Biomethane</th>
<th>E-methane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power plants</td>
<td>-202</td>
<td>-176</td>
<td>-209</td>
</tr>
<tr>
<td>Industry</td>
<td>-207</td>
<td>-180</td>
<td>-24</td>
</tr>
<tr>
<td>Transport</td>
<td>-17</td>
<td>-71</td>
<td>-56</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manure prices [€/GJ]</th>
<th>-202</th>
<th>-176</th>
<th>-209</th>
<th>-17</th>
<th>-24</th>
<th>-56</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-66</td>
<td>-40</td>
<td>-71</td>
<td>87</td>
<td>80</td>
<td>50</td>
</tr>
<tr>
<td>4.5</td>
<td>-45</td>
<td>-19</td>
<td>-49</td>
<td>104</td>
<td>97</td>
<td>67</td>
</tr>
<tr>
<td>5.2</td>
<td>-23</td>
<td>3</td>
<td>-26</td>
<td>120</td>
<td>114</td>
<td>84</td>
</tr>
<tr>
<td>5.9</td>
<td>-28</td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Displacing</th>
<th>Gasified biomass</th>
<th>Gasified biomass + H$_2$</th>
<th>Gasified biomass</th>
<th>Gasified biomass + H$_2$</th>
<th>Liquid bio-electrofuels</th>
<th>Gasified biomass</th>
<th>Gasified biomass + H$_2$</th>
<th>Liquid bio-electrofuels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Gaseous fuel costs

Liquid fuel costs in reference
Cost breakdown

<table>
<thead>
<tr>
<th>Manure prices [€/GJ]</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biogas</td>
<td></td>
</tr>
<tr>
<td>Power and Heat/Industry</td>
<td>9.2</td>
</tr>
<tr>
<td>Biomethane</td>
<td></td>
</tr>
<tr>
<td>Power and Heat/Industry</td>
<td>9.1</td>
</tr>
<tr>
<td>Transport</td>
<td></td>
</tr>
<tr>
<td>Power and Heat/Industry</td>
<td>9.3</td>
</tr>
<tr>
<td>E-methane</td>
<td></td>
</tr>
<tr>
<td>Power and Heat/Industry</td>
<td>7.0</td>
</tr>
<tr>
<td>Transport</td>
<td></td>
</tr>
<tr>
<td>Power and Heat/Industry</td>
<td>7.2</td>
</tr>
</tbody>
</table>

- Biogas plant
- Biogas purification
- Biogas methanation
- Electrolysis
- Wind
- Compression

Powered by

[Logos and images of sponsors]
• If biogas
 – Power and heat/industry show high cost reductions
 – Power and heat/industry more appropriate if biogas is suitable
 – Fuel distribution could be an issue/imply a higher cost

• If biomethane
 – Versatility + low cost for all analyzed sectors
 – Transport seems the most suitable but high competition with electrification
 – More resilient to feedstock price changes

• If e-methane
 – Feasible in transport sector only
 – It competes with liquid fuels (cheaper) and electric vehicles
Conclusions

• More emphasis on gasification technologies
• Biogas as end-fuel is preferred independent of sector used and high biomass prices
• Biomethane should be used where biogas cannot (power and heat/industry)
• E-fuels have a role, but P2G does not present economic feasibility compared to alternatives.
• Biogas potential might suffer from change in dietary habits.
Thank you!

Andrei David
andrei@plan.aau.dk

Sustainable Energy Planning Group
Department of Planning
Aalborg University Copenhagen