5th International Conference on Smart Energy Systems Copenhagen, 10-11 September 2019 #SESAAU2019

Analysis of the existing barriers and of the suggested solutions for the implementation of Power to Gas (P2G) in Italy

<u>Alessandro Guzzini</u>, Augusto Bianchini, Marco Pellegrini, Cesare Saccani Department of Industrial Engineering (DIN) - University of Bologna

Viale Risorgimento, 2 – 40100 - Bologna

AGENDA

Introduction and state of the art

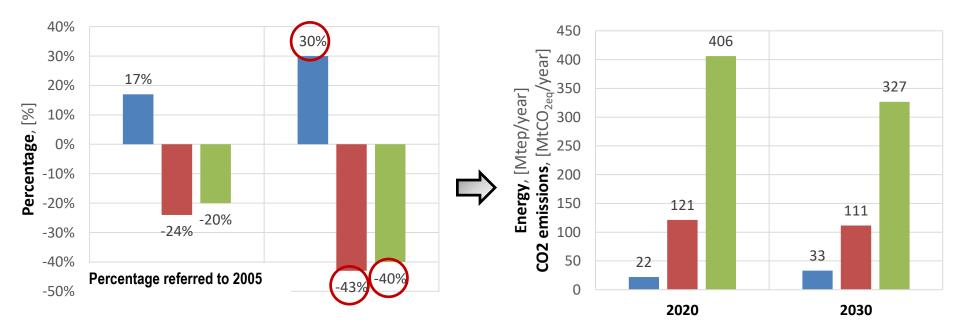
Analysis of the barriers

The proposed solutions

Project started....

Conclusions

Italian Energy and Climate Plan


In 2019, the Energy and Climate Plan was proposed to define Italian energy strategy within 2030

Three main pillars are identified:

- 1. Increase of renewables in final energy consumption
- 2. Increase of efficiency in energy utilisation
- 3. Carbon Dioxide emissions reduction

Italian Energy and Climate Plan

1. Increase of renewable in final energy consumption

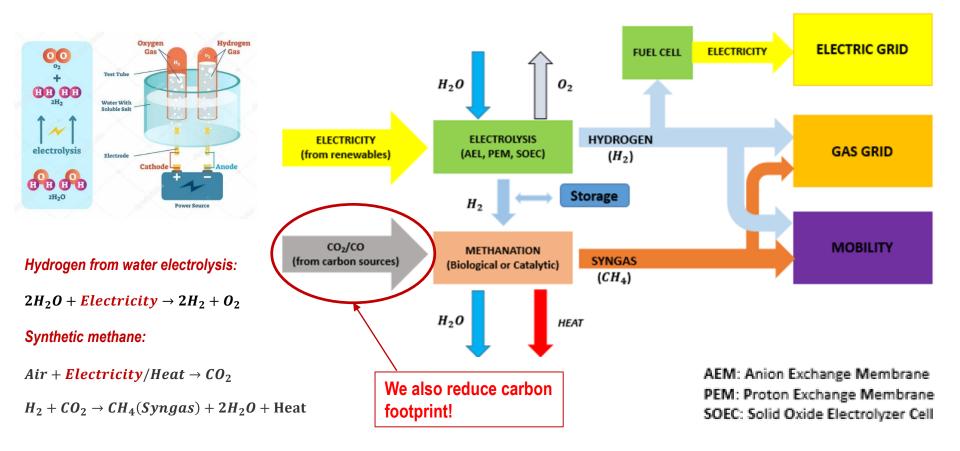
Target = 33 Mtep/year

Electricity production from renewables: 55,4% (+6580 ktep) **Thermal energy production**: 33,0% (+4150 ktep) **Transport**: 21,6% (-3900 ktep) Target of the Authorit)

Energy balance:

$$\alpha \int_0^{365} \int_0^{24} P(t) dt \, dy = \int_0^{365} \int_{t_1}^{t_2} P_{ren}(t) dt \, dy \to \uparrow \alpha \text{ (=55,4\%)} \Rightarrow \uparrow \uparrow \mathsf{P}_{ren}$$

Power balance:


 $P(t) + P_{storage}(t) = P_{ren}(t) + P_{fossil}(t) \Rightarrow$ issues of control and stability of the electric grid

The future energy systems should allow generation flexibility of renewables.

<u>A mix of conventional and innovative solutions</u> should be introduced for the transition to **smart grids** and to the implementation of **energy storage plants** (86 ktep/day)

Power to Gas

Power to Gas process ensures the **connection between electrons and molecules**, converting the surplus electric power in gaseous fuel, such as hydrogen through **water electrolysis**.

Power to Gas: H₂ demand

Furthermore, a great demand of hydrogen is currently present in the world (IEA, 2019):

- Hydrogen (H₂) global demand: <u>70 million tonnes per year</u>.
- Environmental impact:
- → 48% from methane steam reforming (205 x 10⁹ m³ of gas) \rightarrow 10 tCO₂/tH₂
- \succ 30% from oil \rightarrow 12 tCO₂/tH₂
- > 18% from coal \rightarrow 19 tCO₂/tH₂
- > 3,9% from water electrolysis \rightarrow 0 tCO₂/tH₂ if renewable electrical energy is used
- > 0,1% is produced from other sources

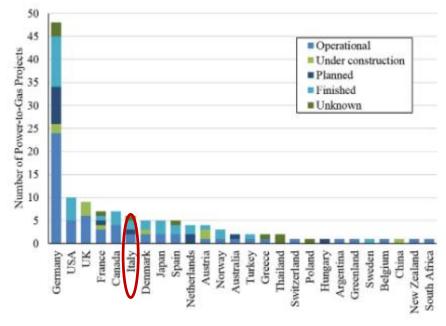
Energetic impact:

- > 275 Mtoe/y totally required for production (2% of global total primary energy demand)
- ▶ Total production efficiency \approx 73,0%

What if all is produced by P2G?

E_{el}: 3600 TWh (> Annual European energy consumption) and 617 million m³ of water

Therefore, Power to Gas can only in part contribute to produce H₂ global demand reducing carbon footprint



Power to Gas: plants in the world

- < 50 plants fully operational at 2018
- Installed capacity of \approx 150 MW (Quarton and Samsatli, 2018).

Barriers must be analyzed to solve this gap!

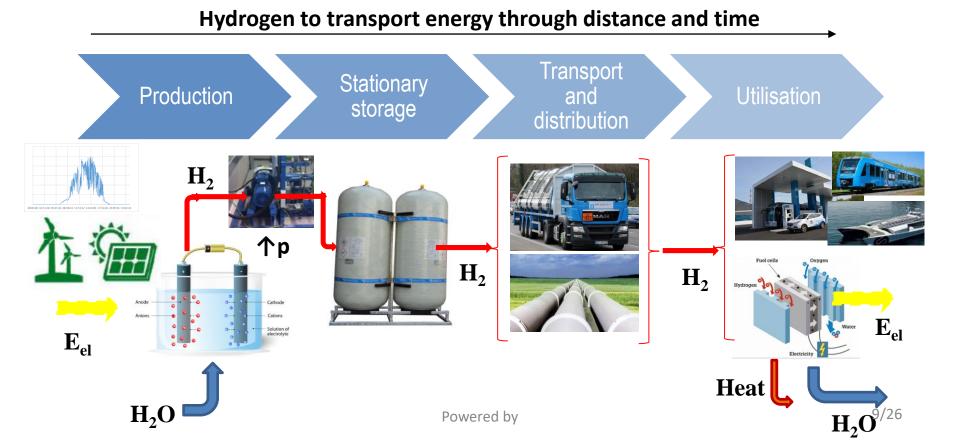
Locations of Power to Gas projects. (Quarton and Samasatli, 2018)

Interactive map www.europeanpowertogas.com/demonstrations

AGENDA

Introduction and state of the art

Analysis of the barriers

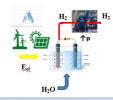

The proposed solutions

Project started....

Conclusions

Several barriers have to be solved in order to ensure the deep penetration of the Power to Gas into the market.

To analyze them and to propose possible solutions, a preliminary and simplified hydrogen supply chain has to be introduced:



Through a careful analysis of literature, existing projects, standards and other documents the following **barriers classification** was considered:

- 1. **Economic barriers**: negatively influence project economic feasibility
- 2. Technical barriers: obstacle technology development but can be solved through an intensive and dedicated R&D activity

In accordance to the **HyLaw project** also the following were reported:

- **3. Structural barriers**: a non adapted regulation which prevents or seriously hinders the development of Power to Gas projects
- 4. **Operational barriers**: obstacle Power to Gas projects but can be solved during execution of the specific activity
- 5. **Regulatory barriers**: due to the complete absence of regulation respect to a specific topic, create great uncertainty about the end result of the project.

1. Production of hydrogen through Power to Gas

Identified barrier	Туре	Reasons				
Definition of Power to Gas	Regulatory	No clear and unequivocal legal position is present in Italy				
(P2G)						
Land use plan	Structural	Hydrogen production is considered as an industrial activity \rightarrow				
		authorization and construction constraints				
Permitting processes	Operational	Very complex, long and uncertain permitting process is required for				
		authorization				
Permitting requirements	Operational	Unclear and complex interpretation of procedures \rightarrow overprotection				
	Regulatory	measures				
Technology CAPEX and	Economic	High investments (450 – 5000 k /kWel) and operative costs \rightarrow Levelized				
OPEX		Cost of Energy (LCOE) greater than traditional fuels				
Electrolyser power supply	Economic	No regulatory framework is present about the utilisation of electrolyser as				
	Regulatory	a electricity load balancing device				
Technology efficiency	Technical	Low efficiency [60%; 85%] \rightarrow high energy losses				

2. Stationary storage of hydrogen

Identified barrier	Туре	Reasons				
Land use plan	Structural	Hydrogen production is considered as an industrial activity \rightarrow				
		authorization and construction constraints				
Permitting processes	Operational	Very complex, long and uncertain permitting process is required for				
		authorization				
Permitting requirements	Operational	Unclear and complex interpretation of procedures \rightarrow overprotection				
	Regulatory	measures				
Storage characteristics	Economic	Because of low density (0,0899 kg/Nm3) high volumes or pressure are				
	Technical	required to store H ₂ .				
		To store the daily production from a 1 MW _{el} plant (8 h/day at full load with				
		an efficiency of 60% (i.e. 240 kgH ₂ /day)):				
		V = 2670 m ³ at nominal conditions (p = 1atm, T = 0°C) → size↑ (€↑↑)				
		V = 7,6 m ³ at 350 bar and T = 0°C \rightarrow high cost expected for				
		components. Furthermore, electrical consumption of compressor has to be				
		added to production cost $\rightarrow E_{el}$ = 116659 kJ/kg \rightarrow + 1,53 \notin /kg.				
		Liquid Hydrogen. Despite the lower size, very high costs are required to				
		liquefy and maintain liquid H ₂				

3. Transportation and distribution of hydrogen: road transportation

Identified barrier	Туре	Reasons				
Permitting framework	No barrier	No barrier are present.				
		(ADR 2017 and D.M. 12/5/17) are valid even if some insights are still				
		required about risk assessment				
Quantity and pressure	Technical	Limitation in the quantity of product to be transported due to:				
indication	Structural	Existing rules				
		Components stress limits				
Transport cost	Economic	As shown in (EIA, 2019), road transportation cost has an important impact				
		on the final cost of H ₂ .				
		Transport cost [€/kg H₂] = 0,0031 [€/km] x L [km] + 0,07				
		Production and utilization locations shall be the nearest as possible \rightarrow				
		geographic constraint				

3. Transportation and distribution of hydrogen: pipe transportation

Identified barrier	Туре	Reasons			
Permission requirements	Regulatory	No clear rule for H ₂ injection in existing gas grid (more than 290,000 km, i.e. 15,6 km/km ²). An experimental activity was started by SNAM (main Italian gas TSO) at			
		Contursi Terme to inject up to 5% of H_2 in the grid last 1 st of April.			
		What if? Italian gas consumption: 29 x 10 ⁹ Nm ³ /y Hydrogen to be injected: 1,5 x 10 ⁹ Nm ³ /y = 1,35 x 10 ⁸ kg/y = 4,5 x 106 MWh/y Consumed electrical energy: 7,5 x 10 ⁶ MWhel/y (5% of the expected renewable production at 2030)			
Payment issue	Regulatory	y No payment framework is present \rightarrow very difficult relationship between H ₂			
		producers and grid operators			
Gas quality requirements cost	Technical Structural	Existing framework does not define how to measure and to monitor gas mixture characteristics \rightarrow Wobbe index, calorif value, risk of flame spreading, interaction with materials, and other ones should be defined in standards			
		What if 5% in volume? Natural gas LHV: 39163 kJ/Nm ³ Hydrogen LHV: 10788 kJ/Nm ³ Gas mixture LHV: 37744 kJ/Nm ³ (-3,6%) → Higher volumes to ensure a specific energy need (billing issues).			

3. Transportation and distribution of hydrogen: pipe transportation

Identified barrier	Туре	Reasons				
Safety requirements at	Structural	Existing technical standards and framework does not account hydrogen				
the grid operator	Technical	injection in national gas transportation and distribution grids.				
		Existing plants and BoP are not certified for the use with H ₂ .				
Safety requirements at	Technical	Existing appliances are not certified for H ₂ .				
the end users	Economic	Possible requirements to substitute devices to guarantee safety				
	Structural	l performances.				
		Existing technical standards and framework does not account hydrogen.				
New skilled required	Technical	Currently no experiences, know how and procedures are available for				
		mixture of natural gas and hydrogen.				
		Existing risk assessments and preventive solutions could be not valid.				

4. Final utilization

		H ₂ O				
Identified barrier	Туре	Reasons				
Type of approval	Operational	Several devices supplied by hydrogen are not contained in legislative				
		framework, i.e. H ₂ fueled vehicle				
Service and maintenance	Regulatory	No rules are usually present for services, maintenance and technical				
		inspections				
CAPEX, OPEX and	Economic	High CAPEX and OPEX costs discourage mass market approach (H ₂ cars				
incentives	Regulatory	costs 2,5 times traditional cars)				
		No stimulating measures are also present due to the regulatory lacks				
Easy to be used	Technical	Low confidence of possible customers in H ₂ products. In fact, many gaps				
	Structural	in legislative/regulatory framework and technical issues creates doubts in				
	Operational	possible customers.				

 H_2

Heat

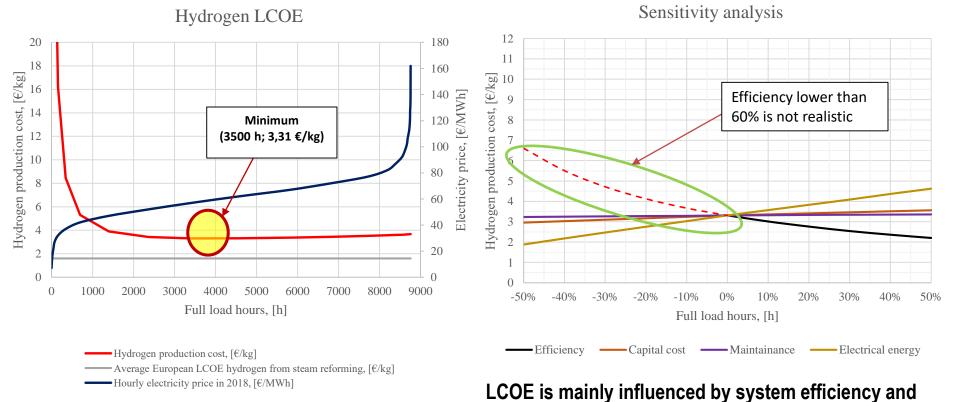
Analysed barriers

PRODUCTION						Dedicated solutions have	
Barrier	Economic	Technical	Structural	Operational	Regulatory Gap	Dedicated solutions have	
Land use plan						to be identified for:	
Permitting processes							
Permitting requirements							
Technology CAPEX&OPEX							
Technology efficiency							
	S	TATIONARY STORAG	iE			Economic barriers	
Barrier	Economic	Technical	Structural	Operational	Regulatory Gap		
Land use plan							
Permitting processes							
Permitting requirements							
Size						Technical barriers	
	TRANSPO	RTATION AND DIST	RIBUTION			Technical barners	
		Road transportation					
Barrier	Economic	Technical	Structural	Operational	Regulatory Gap		
Quantity and pressure indication							
Distance vs Cost							
	Pipe t	ransportation - distri	bution			De mulateme la vielative	
Permission and restriction						Regulatory, legislative	
Payment issues						barriers	
Quality requirements							
Safety requirements at the operators							
Safety requirements at the end users							
New skilled required						This qualitative assessment will be	
UTILIZATION							
Barrier	Economic	Technical	Structural	Operational	Regulatory Gap	compared with the formulation of a	
Type of approval						dedicated <u>questionnaires survey</u> .	
Incentives							
Services and maintenance						LOW MEDIUM HIGH	
Investment cost							
Number of refueling station							

AGENDA

Introduction and state of the art

Analysis of the barriers


The proposed solutions

Project started....

Conclusions

The proposed solution

Economic barriers. An example: LCOE for hydrogen production in Italy

Assumptions:

- 1. CAPEX: 450 €/kW <u>Alkaline</u> electrolyser
- 2. η=0,64
- 3. Maintanance cost: 2% of initial investment
- 4. Discount rate: 4%
- 5. Analysed period: 20 years

electrical energy cost.

Dedicated tariffs, incentives and technology improvements

are so necessary to stimulate the market

Powered by

The proposed solutions

Technical barriers

- 1. A review of the relevant technical issues and several surveys should be performed to ensure "easy to be used" solutions
- 2. A careful analysis of components (instrumentation, piping, equipment, appliances, etc.) and of their integration is necessary to ensure the best performance in terms of total efficiency and safety
- An improvement of water electrolysis efficiency is required → experimental activities of Universities, R&D centers and companies is required
- 3. New materials, high efficient compressors and/or integrated solutions should be investigated.
- 4. Dedicated courses and risk assessments should be performed to improve know-how of H2 gas mixtures

Projects about P2G should be encouraged involving all of the supply chain stakeholders

 $\downarrow\downarrow$

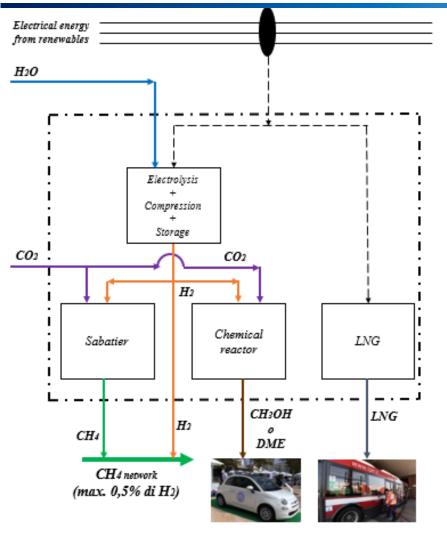
The proposed solutions

Regulatory, legislative barriers

- 1. First of all, Power to Gas (P2G) should be included in the definition of "storage systems". Because of the evolution of energy systems, all possible energy forms should be included.
- 2. To delete the presence of uncertain, long and complicated permission processes:
 - Power to Gas should be considered differently respect to an industrial activity
 - Simplified process should be defined for experimental and demonstrators
 - Dedicated and clear framework should be established for Power to Gas in Italy avoiding over constrained permission procedures
- 3. Italian energy Authority (ARERA) should establish an operational basis and legal framework regarding the access to the gas grid, the identification of payments, tariffs or incentives but also the minimum performances in terms of safety (HyLaw, 2019)
- 4. A clear definition of hydrogen devices should be given by Italian policy makers ensuring:
 - The definition of rules to be applied
 - The identification of incentives and of other support measures

AGENDA

Introduction and state of the art


Analysis of the barriers

The proposed solutions

Project started....

Conclusions

E-CO2

Mobility

National founded project

Aims of the project.

- To provide an estimation, on a regional scale, of the potential production of CO₂ to be used for syngas production
- To experimentally characterize all the involved devices in the P2G chains
- To technically and economically demonstrate the potential use of synthetic fuels
- To identify models able to simulate all the involved technologies and processes based on experimental data

Duration: 2019 – 2020 (24 months)

Total funding: 768 k€ (from Emilia Romagna region)

Involved partners: 4 Universities/Research centre. 4 industrial partners are also involved: a cement plant operator, a gas DSO, a bus company, an equipment producer

AGENDA

Introduction and state of the art

Analysis of the barriers

The proposed solutions

Project started....

Conclusion

Conclusions

- 1. Power to Gas (P2G) represents a very interesting and necessary solution to ensure the transition to the new renewable and low carbon expected scenario
- 2. The annual demand of hydrogen, 70 Mton/y, is mainly supplied by conventional processes being responsible for high CO₂ emission. P2G, instead, could contribute being a zero carbon hydrogen source
- 3. Several barriers are currently present in Italy resulting very difficult to operate P2G plants. In particular, technical, economic, operational, structural and economic gaps were identified in all the Italian P2G supply chain
- 4. Dedicated and very complex solutions are required to solve the barriers. Because of the number, an AHP approach should be considered for prioritization
- 5. Projects should be however encouraged to increase P2G public acceptability

5th International Conference on Smart Energy Systems Copenhagen, 10-11 September 2019 #SESAAU2019

Analysis of the existing barriers and of the suggested solutions for the implementation of Power to Gas (P2G) in Italy

<u>Alessandro Guzzini</u>, Augusto Bianchini, Marco Pellegrini, Cesare Saccani

Department of Industrial Engineering (DIN) - University of Bologna Viale Risorgimento, 2 – 40100 - Bologna

