Simulation-based assessment of energy flexibility offered by the thermal capacity in district heating network pipes

Annelies Vandermeulen
Tijs Van Oevelen
Bram van der Heijde
Lieve Helsen
Context
Network flexibility:
To use the thermal inertia of the water contained in the pipes to shift the plant heat load in time.

1 Charge period
2 Discharge period
3 Rebound period
Research goal

How sensitive is the available network flexibility to the control parameters?

Control parameters:

- t_{pulse}
- ΔT_{sup}
Network model: Modelica

- Aggregated model of Waterschei (Belgium) – 1500 buildings
 - Single building (Aggregated heat demand profile) [1]
 - Extensive substation model

- Pipe: validated plug flow model [2]
- Plant: no ramping and power output constraints

Simulated cases

Seasons:
- Winter
- Spring
- Summer

Scales:
- 1500 buildings
- 150 buildings
- 15 buildings

Control parameters:
- t_{pulse}
- ΔT_{sup}
Methodology

Quantification of network flexibility:
By simulating two cases:

1) No flexibility: constant temperature
2) Flexibility: pulse temperature

1 Charge period
2 Discharge period
3 Rebound period
Variations of t_{pulse}

- Short Charge
 - $\Delta T_{\text{sup}} = 9^\circ \text{C}$
 - $t_{\text{charge}} = 5 \text{ min}$

1 Charge period
2 Discharge period
3 Rebound period

Plant

- Temperature [°C]
- Heat flow rate [kW]

Building

- Temperature [°C]
- Mass flow rate [kg/s]
- Heat flow rate [kW]
Variations of t_{pulse}

1. Charge period
2. Discharge period
3. Rebound period

Optimal Charge

$\Delta T_{\text{sup}} = 9^\circ\text{C}$
$t_{\text{charge}} = 35\ \text{min}$
Variations of t_{pulse}

1. Charge period
2. Early discharge period
3. Discharge period
4. Rebound period

Long Charge

$\Delta T_{\text{sup}} = 9^\circ\text{C}$
$t_{\text{charge}} = 60 \text{ min}$

Plant

Building

Temperature [°C]

T_{sup}

ΔT_{sup}

t_{up}

t_{down}

Time [h]
Variations of t_{pulse}

![Diagram showing variations of t_{pulse} with time and temperature parameters.]

- t_{up} and t_{down} represent the time periods for the pulse.
- T_{sup} is the supply temperature.
- ΔT_{sup} is the temperature change.

![Bar chart showing discharged energy for different pulse durations.]

- Discharge period vs. Early discharge period.
- Short, Optimal, and Long durations are shown.

5th International Conference on Smart Energy Systems
Copenhagen, 10-11 September 2019
#SESAAU2019
Conclusions

Characterization of supply temperature pulse response:
- **Charge period**
- **Discharge period**
- **Rebound period**

To activate network flexibility: Limited charge duration is important to prevent early discharging
Questions?
Variations of ΔT_{sup}

1 Charge period
2 Discharge period
3 Rebound period

$t_{charge} = 15\text{ min}$
Variations of ΔT_{sup}
Variations of t_{charge}

- t_{up}
- t_{down}
- T_{sup}
- ΔT_{sup}

Discharge period
Early discharge period

Discharged energy [kWh]

Heat flow rate [kW]

Short | Optimal | Long