

5th International Conference on Smart Energy Systems Copenhagen, 10-11 September 2019 #SESAAU2019

Simulation-based assessment of energy flexibility offered by the thermal capacity in district heating network pipes

Annelies Vandermeulen

Tijs Van Oevelen

Bram van der Heijde

Lieve Helsen

Context

KU LEUVEN

5th International Conference on Smart Energy Systems Copenhagen, 10-11 September 2019 #SESAAU2019

Network flexibility

Network flexibility:

To use the thermal inertia of the water contained in the pipes to shift the plant heat load in time

Charge period Discharge period Rebound period

KU LEUVEN

🣂 vito

Energy*Ville*

Research goal

KU LEUVEN

How sensitive is the available network flexibility to the control parameters?

Control parameters:

- t_{pulse}
- ΔT_{sup}

Network model: Modelica

- Aggregated model of Waterschei (Belgium) 1500 buildings
 - Single building (Aggregated heat demand profile) [1]
 - Extensive substation model
- Pipe: validated plug flow model [2]
- Plant: no ramping and power output constraints

[2] B. Van Der Heijde *et al.*, "Dynamic equation-based thermo-hydraulic pipe model for district heating and cooling systems," *Energy Convers. Manag.*, 5 vol. 151, no. July, pp. 158–169, 2017.

KU LEUVE

🛰 Enerav Ville

building

plant

vito

Simulated cases

KU LEUVEN

Seasons:

- Winter
- Spring
- Summer

Scales:

- 1500 buildings
- 150 buildings
- 15 buildings

Control parameters:

- t_{pulse}
- ΔT_{sup}

Methodology

Quantification of network flexibility:

By simulating two cases:

1) No flexibility: constant temperature 2) Flexibility: pulse temperature

[°C]

Heat flow

KU LEUVEN

🛰 Energy*Vílle*

🧩 vito

5th International Conference on Smart Energy Systems Copenhagen, 10-11 September 2019 #SESAAU2019

12

To activate network flexibility: Limited charge duration is important to prevent early discharging

$[\circ C]$

Charge period Discharge period Rebound period

Characterization of supply temperature pulse response:

Conclusions

 ΔT_{sup}

 t_{down}

Time [h]

 t_{up}

 Γ_{sup}

Questions?

Variations of ΔT_{sup} 🧩 vito 2 Discharge period **Energy***Ville* **3 Rebound period** Plant Building Temperature [°C] ΔT_{sup} Temperature [°C] 60 0 ° C 1°C 50 ΔT_{sup} Т 2 ° C t_{pulse} 40 3°C 4°C 30 - T_{sup} 5°C 6°C 7 ° C Mass flow rate [kg/s] t_{down} 400 8 ° C Time [h] 9°C 'n 300 supply ····· return 200 50000 t_{charge} = 15 min Heat flow rate [kW] 40000 Ċ 30000 20000 05:45 06:30 05:45 06:30 06:45 06:15 06:45 07:00 06:00 06:15 06:00 07:00 building plant 14

1 Charge period

KU LEUVEN

Variations of ΔT_{sup}

Variations of t_{charge} 🣂 vito **Energy***Vílle* Discharge period Early discharge period Temperature [°C] 7000 6000 Discharged energy [kWh] 0000 0000 0005 0005 ΔT_{sup} ι_{charge} - T_{sup} t_{up} t_{down} Time [h] 2000 45000 -40000 -35000 -45000 1000 0 60 min 90 min Heat flow 30000 ß 80 0 Ъ 20 25 30 Ъ 40 45 50 55 65 70 Ъ 85 95 25000 20000 Optimal Short Long 06:30 04:30 05:30 07:00 05:00 06:00

5th International Conference on Smart Energy Systems

Copenhagen, 10-11 September 2019

#SESAAU2019