Rongling Li^{1,} Morten Herget Christensen²

- ¹ Department of Civil Engineering, Technical University of Denmark
- ² Department of Electrical Engineering, Technical University of Denmark

Heating demand peak shaving in smart homes

- In order to address and mitigate the most damaging aspects of antromorphic climate change, climate action is needed
 - Transition towards clean renewable energy sources

- In order to address and mitigate the most damaging aspects of antromorphic climate change, climate action is needed
 - Transition towards clean renewable energy sources
 - Increased need for flexibility in energy systems
 - Storage
 - Production side (Curtailment)
 - Demand Side Management

DTU

Motivation

- In order to address and mitigate the most damaging aspects of antromorphic climate change, climate action is needed
 - Transition towards clean renewable energy sources
 - Increased need for flexibility in energy systems
 - Storage
 - Production side (Curtailment)
 - Demand Side Management
 - » ICT, increased automation

- In order to address and mitigate the most damaging aspects of antromorphic climate change, climate action is needed
- A major part of energy consumption happens in buildings
 - Reduce energy consumption through energy efficiency in buildings

- In order to address and mitigate the most damaging aspects of antromorphic climate change, climate action is needed
- A major part of energy consumption happens in buildings
 - Reduce energy consumption through energy efficiency in buildings
 - Upgrades & renovations
 - New buildings

- In order to address and mitigate the most damaging aspects of antromorphic climate change, climate action is needed
- A major part of energy consumption happens in buildings
 - Reduce energy consumption through energy efficiency in buildings
 - Upgrades & renovations
 - New buildings
 - » ICT, increased automation

- Copenhagen aims to be the first carbon neutral capital by 2025
 - Make the District Heating carbon neutral
 - Fossil-fuel boilers are currently used during peak-load periods

- Copenhagen aims to be the first carbon neutral capital by 2025
 - Make the District Heating carbon neutral
 - Fossil-fuel boilers are currently used during peak-load periods
 - Heating demand flexibility
 - » ICT, increased automation

Experiment

- Demand side management (DSM) Peak Shaving
- Field tests in 16 smart apartments (heating season of 2018/19)
- Schedule control of the temperature setpoint of thermostats
- Focus on the learning process of the methodology

Testing
Dec 2018

Algorithm 2
Feb 2019

Algorithm 1
Algorithm 3
Mar 2019

ICT System

Partners

DTU Civil Engineering Department of Civil Engineering

ICT System

Partners

Center for Electric Power and Energy
Department of Electrical Engineering

DTU Civil Engineering
Department of Civil Engineering

Project timeline

Testing

Dec 2018

Algorithm 2 Feb 2019

Jan 2019

Algorithm 3

Mar 2019

Testing phase – December 2018

- Making sure that the all systems was working correctly
- Fixing issues in the ICT system
- Single living room → Multiple living rooms
- Response of the heating system (indoor temperature) to simple control signals

Outcome

Data available + monitoring/visualization tools → Detect issues in the system

Algorithm 1 – January 2019

- Definition of reference temperature setpoint:
 - Offline calculation using historical data of indoor temperature
- Pre-heating between 2:00 and 6:00:
 - Only living rooms
 - Offset of +1°C
- Peak shaving between 6:00 and 9:00:
 - All rooms
 - Offset of -1°C

Algorithm 1 – January 2019

Outcomes

- Historic setpoint was not OK
- Pre-heating time of 4 hours was too long
- Delay of 15 minutes was observed in the system response

Algorithm 2 – February 2019

- Definition of reference temperature setpoint:
 - Defined as the current setpoint at 2:30
- Pre-heating between 4:00 and 5:45:
 - Only living rooms
 - Offset of +1°C
- Peak shaving between 5:45 and 9:00:
 - All rooms
 - Setpoints fixed in 20°C

Algorithm 2 – February 2019

Outcomes

- Users feedback: bathrooms and toilets removed from experiments (warm floor)
- Rebound effect observed when temperatures were increased back to reference
- No pre-heating was needed (building's thermal inertia was enough)
- It was possible to increase the heat cut-off period

Algorithm 3 – March 2019

- Bathrooms and toilets were excluded from our control loop
- Definition of reference temperature setpoint:
 - Defined as the current setpoint at 3:30
 - No pre-heating
 - Peak shaving between 5:45 and 12:00:
 - Offset of -1.5°C
 - Extra step at 12:00 to set back the setpoint
 - Delay of 1 minute between rooms

Results – Algorithm 3

- 1. Read of setpoint reference (3:30)
- 3. Heat cut-off (5:45)
- 2. Beginning of DSM experiment (3:40)
- 4. Setpoint back to reference (12:40)

Conclusion

- Significant reductions compared to non-experimental days with similar weather conditions
- Little impact on indoor temperature
- These methods can be applied to other smart homes where heating supply is controlled using room thermostats

Thank you

Morten Herget Christensen

DTU - Electrical Engineering mhchris@elektro.dtu.dk +45 50 45 97 09

Rongling Li

DTU - Civil Engineering liron@byg.dtu.dk +45 45 25 18 06