

Online MPC of a heat-booster substation for ultralow temperature district heating

Virginia Amato¹, <u>Kevin Michael Smith</u>¹; Corentin Latou¹; Svend Svendsen¹; Jan Eric Thorsen² ¹Department of Civil Engineering, Technical University of Denmark (DTU) ²DHS-AA Application Centre, Danfoss A/S

> 5th International Conference on Smart Energy Systems 4th Generation District Heating, Electrification, Electrofuels and Energy Efficiency 10-11 SEPT 2019 ∞ COPENHAGEN

- ULTDH (T = 40-45°C) is too cool for safe DHW production
- Need an auxiliary energy source (electricity)
- Increasing share of intermittent renewable sources: requires demand-side flexibility
- Peak boilers expensive and polluting: shave peak loads

Integration of heat and electricity sectors

- Heat pumps can absorb excess electricity and store heat in **tanks**
- Smart control can shift the load and reduce costs and emissions

System model

- Model of the substation with Modelica
- Validation with real data from measurements

Energy demand

- Prediction through statistical time series models
- Test the forecasting methods with real data

Energy cost

• Construction of a time-varying energy tariff

Optimal control problem

DHW for 22 flats

Two storage stanks in series Total storage volume: **1500** I

Main heat pump:

Condenser capacity: **15 kW** Electricity consumption: **3 kW** On-off operation

Circulation heat pump:

Condenser capacity: **3 kW** Electricity consumption: **0.6 kW** Always on

Components included in the Modelica Buildings Library v5.1

Temperature measured in different sensors of the tank VS temperature from Dymola simulation

Mass flow in the condenser of the main heat pump

DH return temperature

DHW CONSUMPTION FORECASTING

 Triple exponential smoothing (Holt-Winters): Weighted sum of the seasonal and non-seasonal past observations, where weight of the past observations decreases exponentially over time

Model with daily seasonality (period = 24)

Model with weekly seasonality (period = 168)

Observation and forecast of the cumulative volume consumed in one day

min
$$Z = \sum_{t=t_0}^{Np} (Pdh(t) \cdot cdh(t) + P_{el}(t) \cdot cel(t) + w(t) \cdot c_w(t))$$

s.t.
$$s(t) = s(t-1) + q_{hp}(t-1) - q_{dw}(t-1) - q_{loss}(t-1)$$
$$s_{max} + w(t) \ge s(t) \ge s_{min} - w(t)$$
$$qmax \ge q_{hp}(t) \ge q_{min}$$

- Solve the optimization problem with initial state from measurements
- 2. Apply control in Dymola for 24 hours
- 3. Use results from Dymola as initial state for the next optimization time horizon

ELECTRICITY TARIFF CONSTRUCTION

Electricity price in 2017

Spot/load-based tariff

- Energy cost weighted with the **spot price**
- Transmission and distribution cost weighted with the grid load level (Ulbig, 2010)

$$C_{el}(t) = C_{energy} \cdot \frac{spot(t)}{spot_{avg}} + C_{system} \cdot \frac{load(t)}{load_{avg}} + C_{other}$$

DTU

ELECTRICITY TARIFF CONSTRUCTION

Approach 1

Constant electricity taxes

Approach 2

- Electricity taxes weighted with CO₂ intensity signal (Knudsen and Petersen, 2016)
- Average electricity tax reduced
- PSO eliminated

The two different tariffs were used in the objective function of two optimization programs. The district heating price was first assumed to be constant.

• DH energy cost weighted with the data about **marginal production costs** available

 DH tariff combined with electricity tariff in the objective function

- Security of DHW supply: top tank temperature > 55° C
- No overcharging: mass-weighted DH return temperature ≈ 30 ° C

Scenario 1

Electricity tariff with constant taxes, constant DH price

Scenario 2

Electricity tariff with variable taxes, constant DH price

Scenario 3

Electricity tariff with variable taxes, variable DH price

■ Set-point

Set-point + schedule

MPC 1: El. tariff with constant taxes, constant DH price

MPC 2: El. tariff with flexible taxes, constant DH price

MPC 3: El. tariff with flexible taxes, variable DH price

- The optimal control model using consumption forecasts is able to supply enough energy to fulfill comfort and health requirements for DHW production
- The consumption can be shifted almost entirely from **peak hours**
- The optimal control is superior to standard control systems based on set-points and fixed schedules in minimizing emissions and costs
- The economic incentive becomes relevant if time-varying energy tariffs with flexible taxes are applied

- Optimize the control in Jmodelica.org using MPCPy: optimization based on state estimation of the model in Dymola (stratified storage tank, return DH temperature)
- Circulation heat pump: optimization of the heat source used for the evaporator, including return DH (model of the space heating system needed)
- DH tariff: hourly data about marginal costs for ULTDH, grid load level and carbon intensity

Thank you for your attention

DHW CONSUMPTION FORECASTING

• Seasonal ARIMA: The forecast is a linear combination of its seasonal and non-seasonal lagged values and of the past forecast errors, where the data are are transformed using differencing.

