

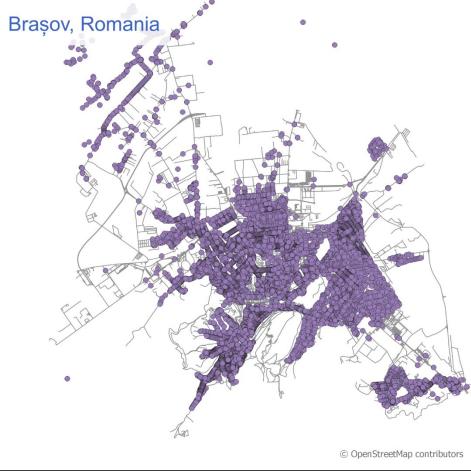
5th International Conference on Smart Energy Systems
Copenhagen, 10-11 September 2019
#SESAAU2019

Clustering of heat demand in district heating areas & estimation of transmission line costs

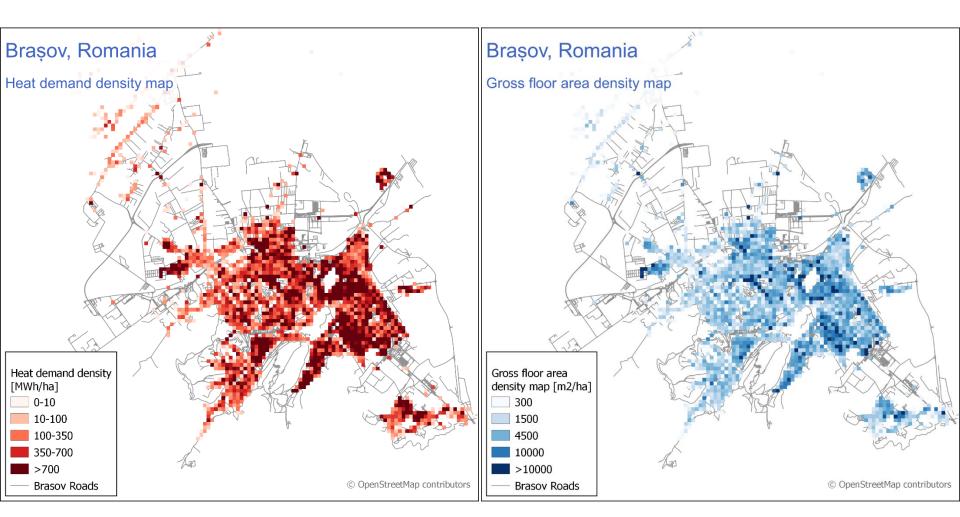
Mostafa Fallahnejad, Lukas Kranzl 10 September 2019

Contents

- Introduction: Planning a DH system in pre-feasibility phase
- Research questions
- Approach: Clustering of heat demand in potential DH areas
- Identify economic clusters & transmission lines
- Results
- Conclusions

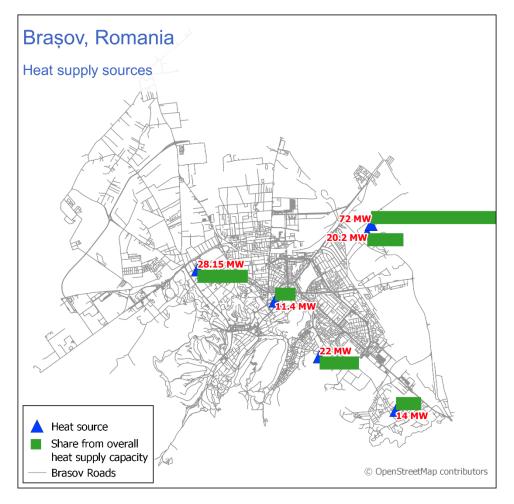


Start planning for DH system


For planning DH system, we should have a perspective to the urban areas and distribution of heat consumers.

Roads and points do not say much!

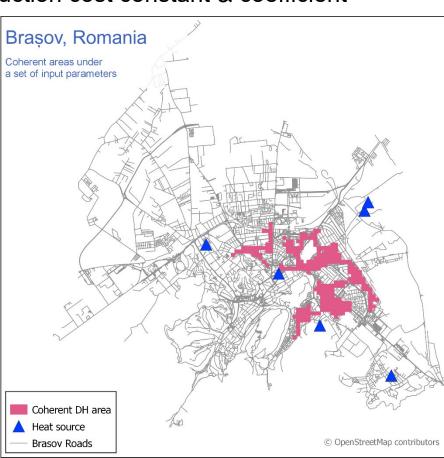
Heat & gross floor area density maps


Persson U, Wiechers E, Möller B, Werner S. Heat Roadmap Europe: Heat distribution costs. Energy 2019;176:604–22. doi:10.1016/j.energy.2019.03.189.

$$Inv = \propto * \frac{C_1 + C_2 * d_a}{O/L}$$

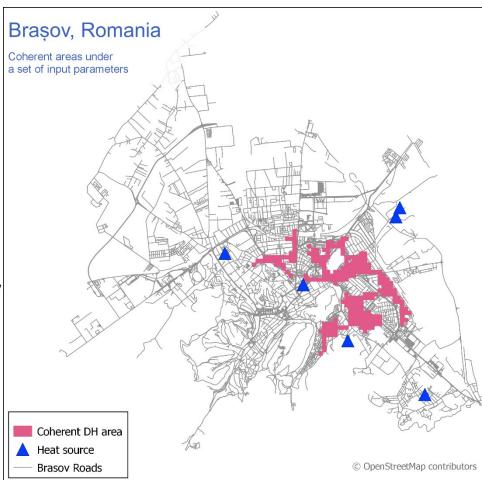
We should also know about heat sources!

For each heat source, a simple cost function is defined:


Costs = fix_costs + Oper_costs

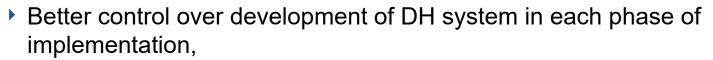
Determine potential DH areas (coherent DH areas)

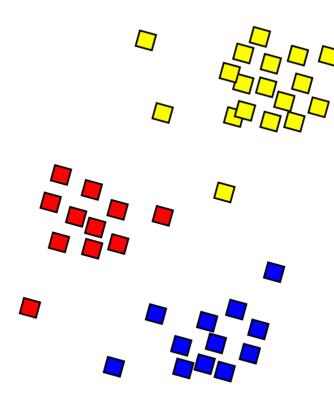
- Annualized specific investment cost per unit of delivered heat in each pixel: according to Persson et al.*.
- ▶ Economic parameters: available capital for investment, interest rate, investment period, grid cost ceiling, construction cost constant & coefficient
- Other parameters: connection rate, energy saving, heat demand, plot ratio
- Priority of coherent areas with higher heat demand.
- Conditions:
 - Distribution grid cost ceiling (EUR/MWh),
 - Available capital for investment in <u>grid</u> (Million EUR),
 - Available heat to supply.


^{*} Persson U, Wiechers E, Möller B, Werner S. Heat Roadmap Europe: Heat distribution costs. Energy 2019;176:604–22. doi:10.1016/j.energy.2019.03.189.

Research questions

Is implementation of DH in all potential DH areas economically viable?

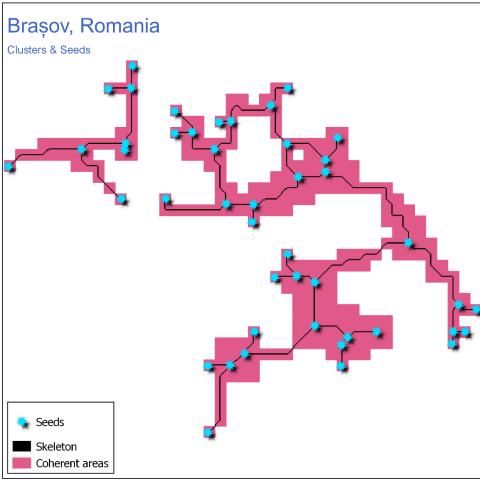

- How good is the estimation for the distribution grid?
- Which one of the available heat sources should be use?
- Which routes should be used to supply heat to DH areas?
- How much of their capacity is used?
- Which routes and capacities should be used for transmission lines? How much



Clustering in coherent areas for answering to research questions

- Optimization-based clustering approach contributes in reducing model complexity and increasing tangibility,
 - We can plan transmission and distribution grids separately,
 - Distribution grid can be optimized and planned in each cluster → reduced complexity.

- Long-term and step-wised planning of the expansion/extension of DH system,
- Determination of profitable areas for starting the implementation,
- Exclusion of non-profitable areas,
- · Estimation of costs and required capital in each phase,

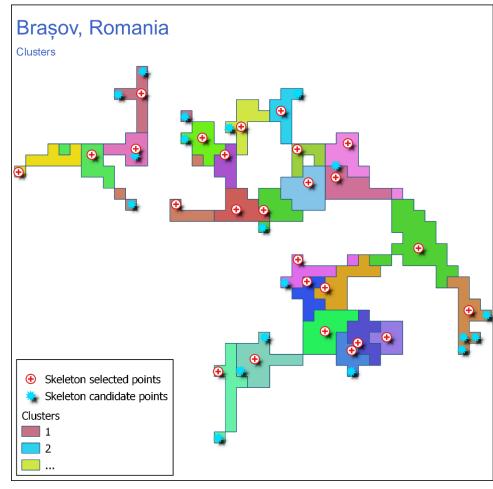

Clustering

For clustering, the number and location of center points of clusters are

important.

A skeleton of the DH areas is calculated and all cross-sections and end-points are considered candidate seeds for constituting clusters.

- In a clustering model, best seeds and consequently, clusters are determined with conditions on heat demand of clusters.
- Transmission lines transfer heat from sources to the center of clusters. Subsequently, the heat is distributed within the clusters via distribution grids.


Clustering model

Criteria:

- Sum of the heat supplied by DH in a cluster must be:
 - greater than user-defined lower band (here, 6.3 GWh/a),
 - lower than user-defined upper band (here, 17 GWh/a, For dense areas).
 - To have a uniform set of clusters.
 - Decided based on connection rate and local conditions.
- Each pixel must belong to only one cluster.

Objective:

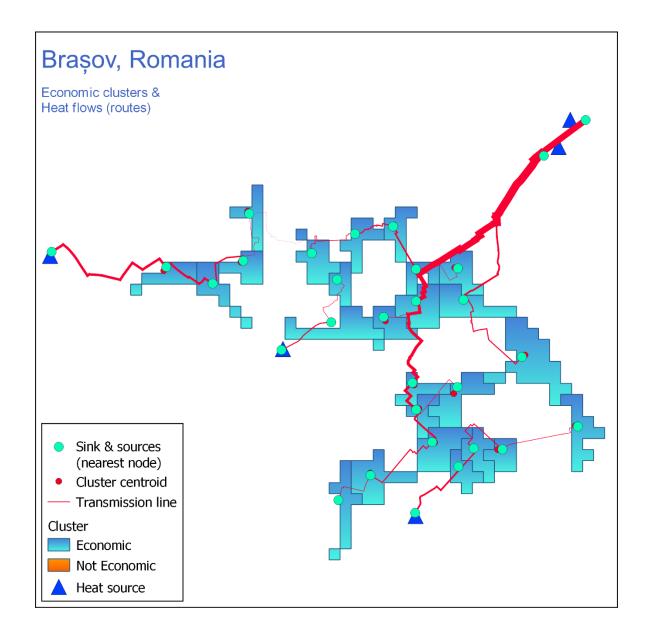
 Sum of distances of all pixels from their cluster center should be minimized

Optimization model – Inputs

- Distance matrix
 - The distance between all pairs of cluster centroids and sources are calculated using Open Street Map routes (all routes except private ones).
- Cost function of heat sources
- Distribution grid costs (<u>currently the values come from Persson et al. method</u>)
- Heat sale price
- Available pipeline dimensions and heat volume that can be transferred by them
- Heat loss level in the grid
- Peak load factor

Optimization model – Objective & expected outputs

- MILP optimization
- ▶ The objective of the MILP optimization model is:


Maximising the heat sale profit

$$Max \ Profit = R_{HeatSale} - C_{HeatGen} - C_{Grid}$$

- Find economic clusters
- Determine the required sources
- Determine the transmission lines routes
- Determine the transmission lines dimensions

Economic clusters, heat flow direction & capacities

Summary of results & limitations

Under defined conditions for this case study:

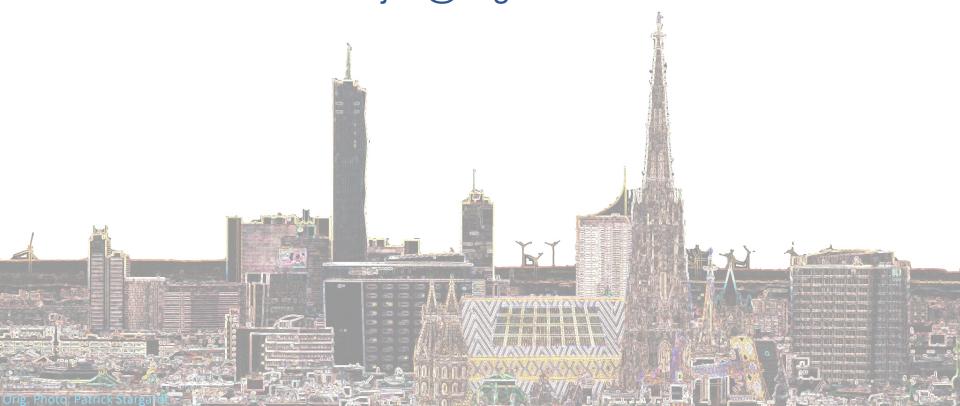
$$\frac{\textit{Trans.grid costs}}{\textit{Total grid investment}}*100 \cong 17\%$$

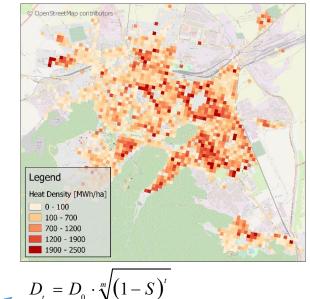
Current limitations:

- It is assumed that grids operate at the same temperature level.
- Heat losses are not function of pipe length and dimension.
- Line costs are aggregation of field work, pipe work, materials, and digging. Therefore, in case of common routes for two pipes, digging costs are calculated twice.
- Also distance matrix used in model considers distances between cluster centers. \rightarrow over-estimation in model
 - Is recalculated after model calculation

Conclusions

- Transmission lines constitute moderate share of grid investment; however, have great impact on profits & avoided costs (avoided heat losses).
- ▶ The proposed method:
 - Leads to reduced model complexity and increased tangibility by:
 - introduction of DH coherent areas,
 - optimization-based clustering,
 - Enables us for:
 - Step-wised planning for extension and expansion of the DH grid,
 - Determination of profitable areas for starting the implementation,
 - Excluding non-profitable areas,
 - Estimation of costs and required capital in each phase,
- To reflect a better cost estimation, the limitations should be removed in the next updates.




Thank you for your attention!

Mostafa Fallahnejad fallahnejad@eeg.tuwien.ac.at

DH Distribution Costs

- Input GIS layers:
 - Heat demand density map (HDM) 1ha resolution
 - Plot ratio map 1ha resolution
- For each pixel of HDM in each year within the investment period, the followings should be calculated:
 - Annual heat demand (D_t) based on the expected accumulated energy saving (S),
 - Annual heat supply via DH system (Q_t) depending on the market shares $(MS_0 \& MS_m)$,
 - Annualized specific investment cost per unit of delivered heat: according to Persson & Werner** (audit were performed in 83 cities in DE, NL, FR, BE on over 1700 networks.

$$0 \le S \le 1 \qquad ; \qquad t \in \{0, 1, 2, ..., m\}$$

$$Q_{t} = D_{t} \cdot \left[MS_{0} + t \cdot \frac{MS_{m} - MS_{0}}{m} \right]$$

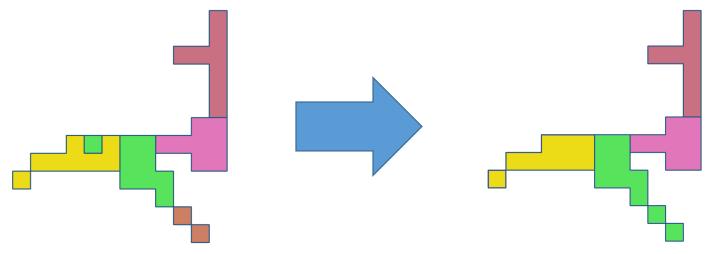
$$L = 1 / w = 1 / (61.8 \cdot e^{-0.15})$$
 [1

$$d_a = 0.0486 \cdot \ln(Q_t / L) + 0.0007$$
 [m]

$$Inv_{T} = \frac{C_{1,T} + C_{2,T} \cdot d_{a}}{\left(\sum_{t=0}^{m} \frac{Q_{T+t}}{(1+r)^{t}} + \sum_{t=m+1}^{n} \frac{Q_{T+m}}{(1+r)^{t}}\right) / L}$$

* www.progressheat.eu

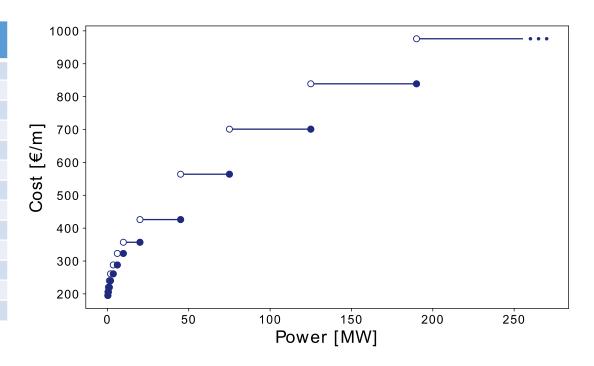
** Persson U, Wiechers E, Möller B, Werner S. Heat
Roadmap Europe: Heat distribution costs. Energy


2019;176:604-22. doi:10.1016/j.energy.2019.03.189.

 $Inv = \propto * \frac{C_1 + C_2 * d_a}{Q/L}$

Revised clusters

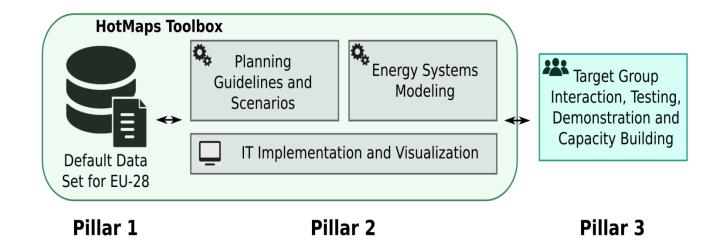
Assign disconnected pixels to their neighbors


- Calculate center of polygons and consider as cluster center (Substations)
- Find closest point of the OpenStreetMap graph to the cluster centers
 - For route calculations

Transmission Line Dimensions

▶ Total cost of transmission pipes including projecting, field work, pipe work, materials, and digging with 55°C temperature difference*.

Step (C)	Dimension DN	Water flow (m/s)	Capacity [MW] (PowStep)	Specific Cost [EUR/m] (SPCTL)
0	32	0.9	0.2	195
1	40	1	0.3	206
2	50	1.2	0.6	220
3	65	1.4	1.2	240
4	80	1.6	1.9	261
5	100	1.8	3.6	288
6	125	2	6.1	323
7	150	2.2	9.8	357
8	200	2.5	20	426
9	300	2.7	45	564
10	400	2.8	75	701
11	500	2.9	125	839
12	600	3	190	976



^{*} Nielsen S, Möller B. GIS based analysis of future district heating potential in Denmark. Energy 2013;57:458-68. doi:10.1016/j.energy.2013.05.041.

Hotmaps Project

Hotmaps will develop, demonstrate and disseminate a toolbox to support public authorities, energy agencies and planners in strategic heating and cooling planning at local, regional and national levels, and in line with EU policies.

- User-driven: developed in collaboration with 7 pilot areas
- Open source: will run without requiring any commercial software
- EU-28 compatible: applicable for cities and areas in EU-28

