A computational model linking EnergyPLAN with Input-Output analysis for evaluating the macroeconomic impact of the transition at regional level

Roberto Vaccaro1,2, Matteo Vincenzo Rocco2
1Eurac Research, 2Politecnico Milano
Rationale of the work (by simplifying)

• Energy (bottom up) models lack in addressing macroeconomic aspects (impacts on sectors, GDP, employment)

• Economic (top down) models lack in capturing the complexity of energy systems (particularly flexibility, sizing of storage needs)

• Hybrid models are complex, requires many data and are not diffused at regional level
Objectives

- Extending the economic analysis’ capacity of the EPLANopt model (EnergyPLAN’s extension by Eurac) beyond investment and O&M costs analysis

Economic data

Reference Scenario
- 1323 M€
- Fuel costs: Oil, Diesel, Petrol, Natural gas
- 1103 M€
- Local investment and operating and maintenance costs: 220 M€

Scenario 2050
- 990 M€
- Local investment and operating costs: 696 M€
- Energy-efficiency costs: 294 M€
Objectives

• Extending the economic analysis’ capacity of the EPLANopt model (EnergyPLAN’s extension by Eurac) beyond investment and O&M costs analysis

• Assessing the potential of the soft-linked model in providing insights to policy makers at regional level

• Understanding strength and weakness of the model as basis for the elaboration of an hard link model
Novelty of the work

• First soft-link between EPLANopt and an Input-Output (IO) model

• Input-Output model is defined in mixed units, enabling:
 * energy balance check (validation procedure)
 * direct physical (and monetary) inputs from energy model
 (allows directly assessing the effect of energy changes)

• The soft-linked model is applied at regional level - South Tyrol (IT) - with high time and space resolutions
EPLANopt

EPLANopt is a software, developed in Python by Eurac, to run a genetic optimization for the EnergyPLAN software

https://gitlab.inf.unibz.it/URS/EPLANopt

- it allows to calculate the Pareto front of optimal multi-objective solutions

- Electric vehicles penetration is an exogenous variable
EPLANopt

EPLANopt is a software, developed in Python by Eurac, to run a genetic optimization for the EnergyPLAN software https://gitlab.inf.unibz.it/URS/EPLANopt

- it allows to calculate the Pareto front of optimal multi-objective solutions
- the Python environment enables introducing additional features (e.g. effect of energy efficiency measures in buildings)
- it exploits/preserves the characteristics of EnergyPLAN of being: computationally fast, technology rich and having hourly resolution
Based on standardised table and on the application of the Leontief model: $x = (I - A)^{-1} f$
Input Output models

• Based on standardised table and on the application of the Leontief model: $x = (I - A)^{-1} f$

• Versatile in use (macroeconomic, environmental and material use analysis)

• Computational fast (linear algebra calculations) and limited data request (given the availability of the IO tables)

• Present limits to be aware of: e.g. constant returns to scale, resources supply is infinite and perfectly elastic, constant technology coefficients
Soft-linked model

Information and data exchange between the models is provided and controlled by the user

- It has been set up in Python (and excel)

SCENARIOS INPUT DATA
- Decision variables:
 - Solar Photovoltaic
 - Solar Thermal
 - Electrochemical storage
 - Heat Pumps
 - Buildings refurbishment
 - Electric Vehicles

EPLANopt model
- Resource availability profiles
- Energy demand profiles
- Baseline energy demand
- Economic costs
- ...

INTERMEDIATE OUTPUT
- CAPEX, OPEX
- Energy production

Input-Output model
- Regional economic / environmental accounts
- Detailed sectoral energy accounts

RESULTS (by sector)
- Change in GDP
- Change in CO2 emissions
Soft-linked model

SCENARIOS INPUT DATA
Decision variables:
- Solar Photovoltaic
- Solar Thermal
- Electrochemical storage
- Heat Pumps
- Buildings refurbishment
- Electric Vehicles

EPLANopt model
- Resource availability profiles
- Energy demand profiles
- Baseline energy demand
- Economic costs
- ...

INTERMEDIATE OUTPUT
- CAPEX, OPEX
- Energy production

Input-Output model
- Regional economic / environmental accounts
- Detailed sectoral energy accounts

RESULTS (by sector)
- Change in GDP
- Change in CO2 emissions

• Decision variables → range of variation (EV exogenous)
• Other parameters and input data for the EPLANopt model
• Results for selected points (4 for each front) are transformed to be inserted in the IO model → e.g. CAPEX and OPEX divided among demands sectors on the base of literature review
• Original IO table pre-processed and transformed into mixed units IO table to directly include results from EPLANopt.
• Results: 34 economic and 7 energy sectors. Aggregated in 6 and 3
Results: EPLANopt vs hybrid model

- Points from 1 to 4: Increasing technologies \rightarrow increasing costs and decreasing CO$_2$ emissions
- CO$_2$ emissions almost coincident \rightarrow verification of hybrid model
- Economic impact dimension: cost vs Gross Domestic Product (GDP)
- Net worth potentially generated in local context is recognized as a relevant information for policymakers.
Results

- Results are numerous and complex
- GDP decreases due to reduced fossil fuel consumption (excise)
- GDP losses offset by increasing (from P1 to P4) new technologies and buildings refurbishment
- Main investments: Electronic equipment, Heavy manufacturing
- Graphs comparison provide relevant insights

Diamonds represent net values (shown in graphs)

Legend (positive values, main sectors):
- Service sector
- Electronic equipment
- Construction
- Heavy manufacturing

Legend (negative values):
- GDP graph: CH4, liquid fossil fuels
- Investments graph: fossil fuels savings
Results for the single point P3 50% EV

- Point chosen because it presents:
 - almost the same total cost of the reference scenario (point 0,0)
 - both an achievable share of EV (50%) and a wide diffusion of other technologies.
Δ [M€] per sector per indicator, for point P3

- IO table are symmetric* → for each sector | sum of inputs = sum of outputs
- Internal inputs → contribution from the other local sectors of the economy
- Internal outputs → contribution to the other local sectors of the economy

* disclaimer: not always true and mixed units IO table alter the sums
Main results. (Sectors are aggregated, possible to have results for 34 economic sectors)

- Service: highest contributions to other sectors (OS), highest GDP
- Construction: high demand, low contribution to OS, highest input from OS, high GDP, low import
- Electronic equipment: highest demand, low contribution to OS, highest imports
Results for the single point P3 50% EV

The tables show how much a specific value has changed in comparison to the correspondent reference scenario value

- In the “Outputs sum” table, the “Total Output” variation is also given. It indicates of how much that sector should increment its output to sustain the transition

- The service sector displays relevant absolute variations but limited relative variations. Suggesting that it could face the transition without major structural change or growth

- Conversely the electronic equipment and constructions sectors presents the highest relative variations → highest impact on the local economy
Results

• The approach allows the identification and quantification of which sectors are affected by the Value-Added generation and to which extent, in which sectors investments occurs and which sectors resort the most on imports or on the other sectors of the economy.

• This means that potential local GDP creation and expansion of relevant sectors for the transition are identified. Potential because of IO limits (i.e. infinite supply). GDP and internal inputs and outputs results do not consider capacity of real economy to sustain it (size and number of companies) → need to integrate with study on actual size and expansion potential of companies.

• To be effectively capitalized within the boundaries of the South Tyrol economy the increases in local Value-Added and in internal activity should be intercepted by proactively promoted, wherever possible, the reinforcement of the interested sectors.
Conclusion

By recalling the objectives:

• the EPLANopt model has been extend with relatively low extra data requirements and complexity. The computational speed and characteristic of the single analysis with EnergyPLAN is preserved.

• insights for policy maker at regional level are provided. Useful in exploring economic relationships and identifying priorities in the development of local policies.

• limits and strengths identified \(\rightarrow \) requirements for integrative studies, to deepen the understanding of information contained in the IO table, addressing limits of IO models, compare results with other methodologies (e.g. CGE).
Thank you for your attention

Roberto Vaccaro
roberto.vaccaro@eurac.edu

www.eurac.edu