MODELLING ENERGY SYSTEMS

- OR -

THE LINGUA FRANCA FOR THE ENERGY TRANSITION

Drs. E. Werkman
Dept. of Monitoring & Control Services
TNO – Dutch Institute for Applied Scientific Research

Photo: Nuon/Jorrit Lousberg
Energy Transition requires extensive information exchange

Infrastructure:
- Who can share a heat network topology with me?
- Matlab table with nodes and edges?
- Shapefile?

Profiles
- CSV, Comma, Semi-colon, Thousand-separator, Excel, Language-dependent
- Giga Joules or GWh, tce?
- UTC, Daylight savings?

KPIs, Facts
- Price of assets
- Emissions
- Data source references
A LANGUAGE FOR ENERGY

- We communicate the energy transition in:
 - Smart Energy Systems require system integration
 - (Simulation) models need to be integrated, but how?
 - Co-simulation
 - People use language to exchange information
 - English is a common natural language
 - Wouldn’t it be nice if we would invent a common digital language for our energy transition?
INFORMATION REQUIREMENTS

† System integration is complex
 † Lots of dependencies and relations

† Objective and complete information basis
 † Many asset types (pipes, cables, wind turbines, P2H, …)
 † Different scales (house/street/municipality/region/country)
 † Spatial – Geographical information (location, area, …)
 † Potential – Geothermal, Waste energy, Wind, Solar
 † Measures – deploy heat network, add wind turbine
 † Key figures – Cost, KPIs, References
 † Profiles – Static data, dynamic data
 † Energy carriers – Natural gas, H2, coal, heat, electricity
ENERGY SYSTEM DESCRIPTION LANGUAGE

- Describe energy system components
- Describe geographical information
- Describe profiles and potential
- Describe solution space

Asset Store

- PV installation
 - 10 panels
 - 2700 Wp
 - €3640,-

- Heatpump
 - Air/water
 - 3.0 kW
 - €2677,-

- Windturbine
 - Hor.Windgen.
 - 2kW 48V 96VAC
 - $1209,-
CAPABILITIES OF AN ENERGY SYSTEM

- **Production**: The ability to produce energy
- **Consumption**: The demand for energy
- **Storage**: The ability to store energy
- **Transport**: The ability to transport energy
- **Conversion**: The ability to convert energy

Aggregate:

- **By sector**
 - Households
 - Services
 - Industry
 - Mobility
 - Agriculture

- **By source**
 - Gas plant
 - Coal plant
 - Wind
 - Solar-PV
 - ...

- **By commodity**
 - Electricity
 - Heat
 - Natural Gas
 - ...

- **By province**
STATUS

- Digital languages need tool-support to get adopted
 - Open sourced at https://github.com/EnergyTransition/ESDL
 - Extensive documentation at https://energytransition.gitbook.io/
 - Detailed class documentation at: https://energytransition.github.io/
 - Extensive tooling
 - Web-based editor with GIS support: https://mapeditor.hesi.energy/
 - Eclipse visual plugin
 - Matlab plugin
 - Python and Java libraries

- What happened at TNO?
 - ESDL adoption in one year in a dozen tools
 - Better integration of our toolsets
 - Better understanding
 - Several projects with external partners
 - EnergyTransitionModel / PICO / VESTA

ESDL compatible tools within TNO
- HeatMatcher: Heat Network Controller
- CHESS: Heat Network simulator
- GEIS: Geographical Energy Information System
- EDR: Energy Data Repository
- EYE: Electricity price forecaster
- DIDO: Agent-based investment model
- Waterbattery: Storage tank calculator
- ESSIM: Energy System Simulator
THANK YOU FOR YOUR ATTENTION

Ewoud Werkman
ewoud.werkman@tno.nl

Take a look:
TIME.TNO.NL