

THE NEED FOR INFORMATION EXCHANGE

- Energy Transition requires extensive information exchange
 - Infrastructure:
 - Who can share a heat network topology with me?
 - Matlab table with nodes and edges?
 - > Shapefile?
 - Profiles
 - CSV, Comma, Semi-colon, Thousand-separator, Excel, Language-dependent
 - Giga Joules or GWh, tce?
 - UTC, Daylight savings?
 - KPIs, Facts
 - Price of assets
 - Emissions
 - Data source references

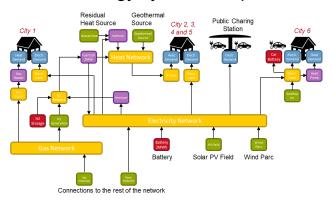

```
1;1-1-2017;1;00:00;00:15;0;;
1;1-1-2017;2;00:15;00:30;0;;
1;1-1-2017;3;00:30;00:45;0;;;
1;1-1-2017;4;00:45;01:00;0;;
1;1-1-2017;5;01:00;01:15;0;;
1;1-1-2017;6;01:15;01:30;0;;
1;1-1-2017;7;01:30;01:45;0;;
1;1-1-2017;8;01:45;02:00;0;;
1;1-1-2017;9;02:00;02:15;0;;
```

A LANGUAGE FOR ENERGY

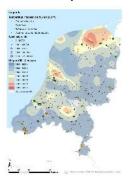
We communicate the energy transition in:

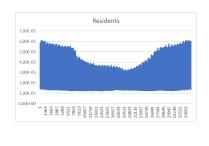
- Smart Energy Systems require system integration
 - (Simulation) models need to be integrated, but how?
 - Co-simulation
- People use language to exchange information
 - English is a common natural language
- Wouldn't it be nice if we would invent a common digital language for our energy transition?

INFORMATION REQUIREMENTS



- System integration is complex
 - Lots of dependencies and relations
- Objective and complete information basis
 - Many asset types (pipes, cables, wind turbines, P2H, ...)
 - Different scales (house/street/municipality/region/country)
 - Spatial Geografical information (location, area, ...)
 - Potential Geothermal, Waste energy, Wind, Solar
 - Measures deploy heat network, add wind turbine
 - Key figures Cost, KPIs, References
 - Profiles Static data, dynamic data
 - Energy carriers Natural gas, H2, coal, heat, electricity


ENERGY SYSTEM DESCRIPTION LANGUAGE



Describe energy system components

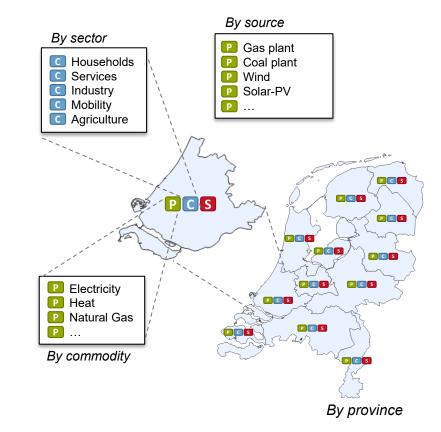
Describe profiles and potential

Describe geographical information

Describe solution space

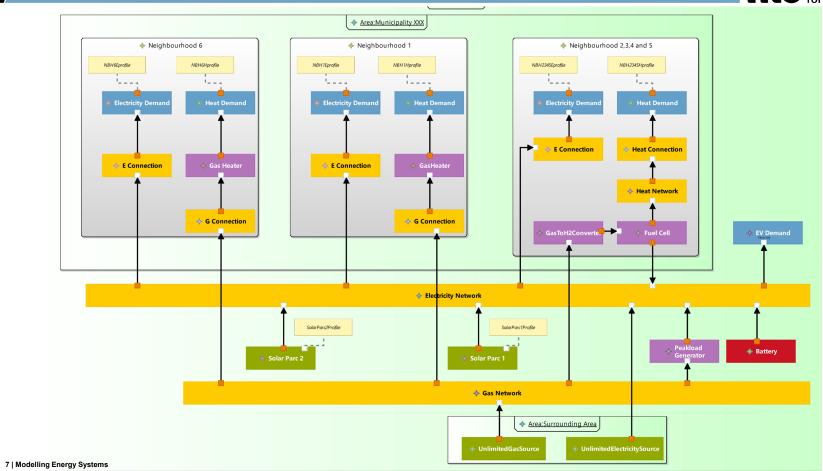
CAPABILITIES OF AN ENERGY SYSTEM

Production: The ability to produce energy

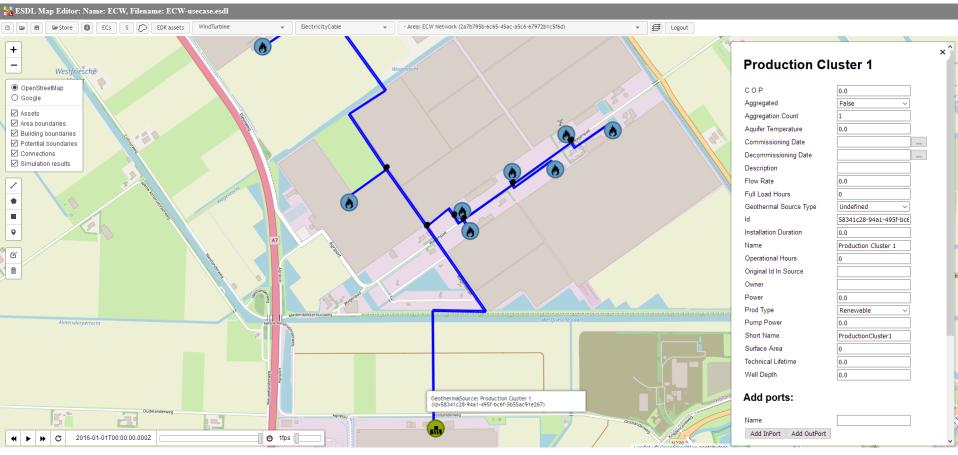

Consumption: The demand for energy

Storage: The ability to store energy

Transport: The ability to transport energy


Conversion: The ability to convert energy

Aggregate:

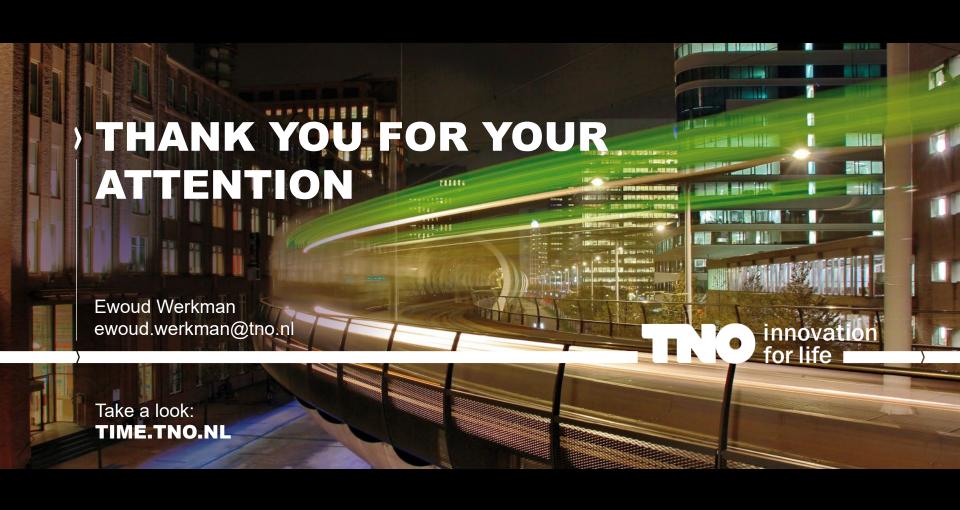

A PART OF A CITY

A HEAT NETWORK

STATUS

- Digital languages need tool-support to get adopted
 - Open sourced at https://github.com/EnergyTransition/ESDL
 - Extensive documentation at https://energytransition.gitbook.io/
 - Detailed class documentation at: https://energytransition.github.io/
 - Extensive tooling
 - Web-based editor with GIS support: https://mapeditor.hesi.energy/
 - Eclipse visual plugin
 - Matlab plugin
 - Python and Java libraries
- What happened at TNO?
- ESDL adoption in one year in a dozen tools
 - Better integration of our toolsets
 - Better understanding
 - Several projects with external partners
 - EnergyTransitionModel / PICO / VESTA

ESDL compatible tools within TNO


HeatMatcher Heat Network Controller
CHESS Heat Network simulator

GEIS Geographical Energy Information System

EDR Energy Data Repository
EYE Electricity price forecaster
DIDO Agent-based investment model

Waterbattery Storage tank calculator

ESSIM Energy System Simulator

