

Blockchain Applications and Case Studies in District Energy and Power-to-Heat 5th International Conference on Smart Energy Systems 10-11 September 2019, Copenhagen.

Ralf-Roman Schmidt¹, Mark Stefan¹, Paul Zehetbauer¹,

Michael Niederkofler², Andreas Schneemann²

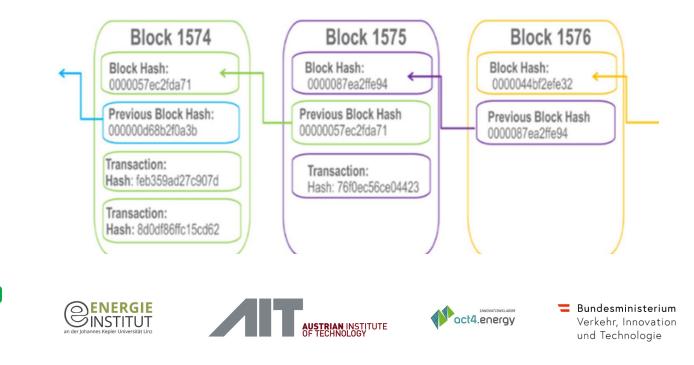
Thomas Zeinzinger³

- ¹ AIT Austrian Institute of Technology GmbH
- ² Energie Kompass GmbH
- ³ lab10 collective eG

sustainable blockchair

CONTENT

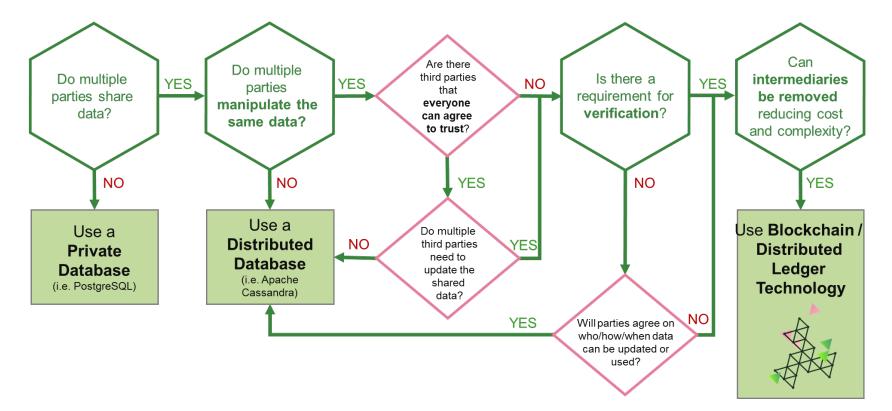
- Blockchain a short (!) introduction
- The SonnWende+ Project
 - Invested use cases
- Use Case transparency for crowd-Invest
 - Concept
 - Advantages of the blockchain approach
 - Example
- Conclusion



20.09.2019

WHAT IS BLOCKCHAIN?

- Blockchain is mostly known for its application in Bitcoin (and others)
- Blockchain is a distributed database (= "distributed ledger")
 - shared and synchronized across a network.
 - not owned or controlled by one central authority,
 - everyone can access the full information and all the history.



WHEN TO USE A BLOCKCHAIN?

Source: Thomas Zeinzinger, Iab10; Original Source: <u>https://www.slideshare.net/PabloJunco2/distributed-ledger-technology-dlt-beyond-blockchain-blockchainsubmit</u>

THE SONNWENDE+ PROJECT

tv of Tomorrow

https://nachhaltigwirtschaften.at/en/sdz/projects/sonn-wende-plus.php

Efficient solutions for PV energy management based on block chain technology

- Key facts
 - national funding (Stadt der Zukunft, 4. Ausschreibung)
 - Project run time: 10/2017 12/2019

Aim:

- Identify and specify concrete solutions for the use of Blockchain technology and check their feasibility
- The design of selected use cases will be adjusted and a Blockchaindemonstrator will be implemented in the innovation-lab (Südburgenland, AT).

THE SONNWENDE+ PROJECT

https://nachhaltigwirtschaften.at/en/sdz/projects/sonn-wende-plus.php

Investigated use cases and their application to district energy

transparency for crowd-Invest	crowd-investments into energy infrastructures (e.g. PV, heat pump) and continuous flowback of the revenues
energy ledger	collection of digital points that can be exchanged for various benefits, similar to "miles and more". Earning point possible e.g. via efficiency measures
fully automatic charging	wireless charging and payment process for electric vehicles, based on conductive charging infrastructure
peer-to-peer trading	smart grid community: producers and consumers can share resources (PV electricity) among each other and with the energy supplier

THE SONNWENDE+ PROJECT

https://nachhaltigwirtschaften.at/en/sdz/projects/sonn-wende-plus.php

Investigated use cases and their application to district energy

crowd-investments into energy infrastructures (e.g. PV, transparency for crowd-Invest heat pump) and continuous flowback of the revenues energy ledger collection of **digital points** that can be exchanged for various benefits, similar to "miles and more". Earning point possible e.g. via efficiency measures peer-to-peer smart grid community: producers and consumers can trading share resources (PV electricity) among each other and with the energy supplier

Bundesministerium Verkehr, Innovation und Technologie

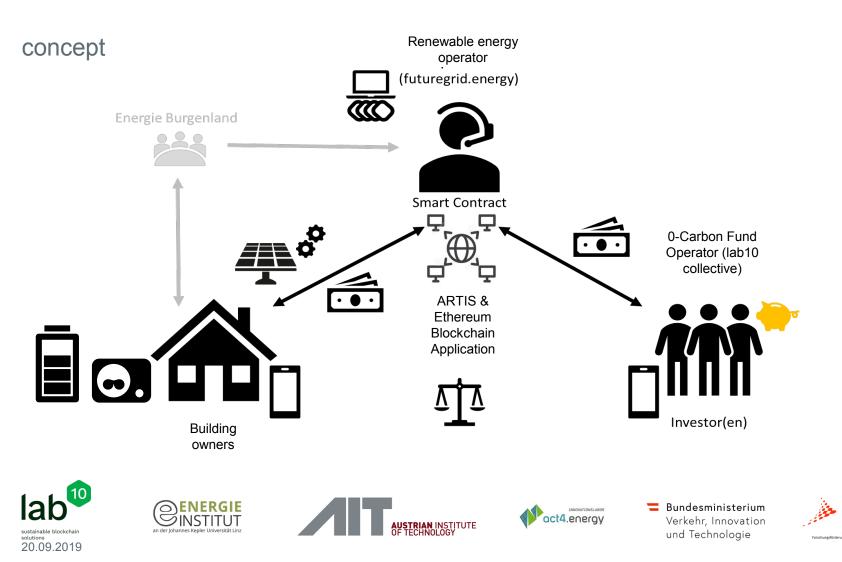
Focus of the

presentation

TRANSPARENCY FOR CROWD-INVEST

concept

- 1. Building owners provide roof areas / basement space
- **2. Investors** provide the financial means
 - purchase + installation of e.g. PV panels and/or heat pumps
- 3. The **operator** (the intermediate between investor and building owner) is responsible for installation and billing.
- 4. Plant costs are refinanced via PV own consumption and surplus as well as reduced heating bills (heat pumps substituting former heating system)
- 5. Monthly billing based on actual own consumption / surplus \rightarrow Automated monthly blockchain-based **payback** with interest to the investors
- 6. As soon as the system costs are covered, the PV system becomes the property of the building owner

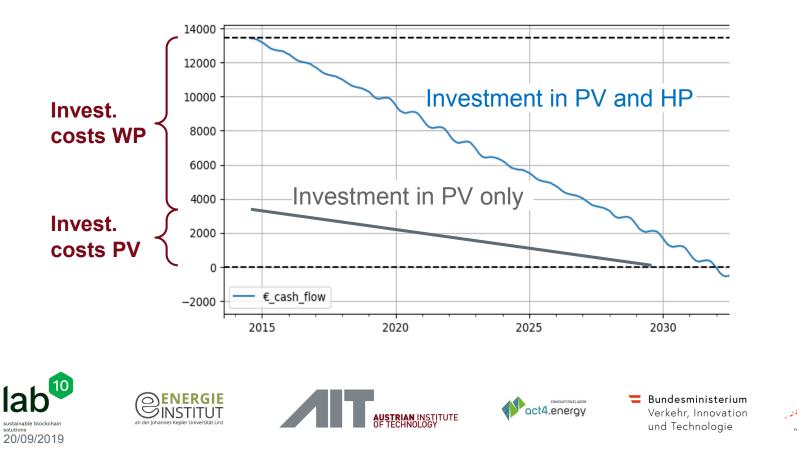


TRANSPARENCY FOR CROWD-INVEST

FG

ADVANTAGES OF THE BLOCKCHAIN

- **Scalability** worldwide application possible ٠
- participation of various investors allows the general public easier, • disintermediated access and participation
- Automated handling of financial flows and customer relations -• continuous flow back of the revenues
- high level of **transparency** of all cash flows for investors •
- Long term and **secure return** on equity capital. •



EXAMPLE

Investment into a 2kWp PV plant + Heat Pump (COP = 3); Effective area to heat = 150 m², 100 kWh_{th} / m²a (former heating system: Oil)

FG

CONCLUSIONS

- Investments into PV installations is a scalable and transferable • business model.
- The additional installation of heat pumps ٠
 - Will reduce thermal energy costs, but increase electric energy cost
 - Combined with $PV \rightarrow$ higher self consumption and economic benefits.
 - Whole system needs to be analyzed for more precise costs estimate
 - shifting flexible loads would enable one to increase self consumption
- The blockchain approach can have many advantages ٠
 - E.g. scalability, participation of various investors; automated handling of financial flows; high level of transparency and security
 - However, the regulatory environment and changing subsidies are causing an administrative burden when implementing viable business models

FUNDING

The project SonnWende+ was supported with funds from the bmvit and • implemented in line with the "City of tomorrow" program (4. Ausschreibung), project number 861621

THANK YOU!

Dr.-Ing. Ralf-Roman Schmidt

AIT Austrian Institute of Technology GmbH Giefinggasse 2 | 1210 Vienna | Austria T +43(0) 50550-6695 | M +43(0) 664 235 19 01 | F +43(0) 50550-6679 <u>Ralf-Roman.Schmidt@ait.ac.at</u> | <u>http://www.ait.ac.at</u>

