

SES 2019 Copenhagen, Denmark 10-11 September 2019

Performance analysis of a heat pump system providing district heating and cooling through gradual heating and cooling

Presenter: R. Kofler Co-authors: B.R. Kondakindhi, B. Elmegaard, C. Madsen, L.Olsen, W. B. Markussen

Introduction

Motivation gradual heating

Gradual heating with ISECOP system

Results gradual heating

Kofler et al., 2019. Screening of heat pump performance improvements obtained through gradual heating using a tank system. Proceedings of the 25th International Congress of Refrigeration, International Institute of Refrigeration.

Motivation gradual heating & cooling

Gradual heating & cooling with ISECOP system

Case study

One-stage cycle

- Refrigerants:
 - Ammonia (300 kW)
 - R600a (10 kW)
- District heating
 - Return temperature 40 °C
 - Supply temperature 70 °C
- District cooling
 - Return temperature 15 °C
 - Supply temperature 8 °C

Simulation tool in EES

⊱ 🔒 🚇 👯 🖳 📰 🔠 🖌 🎸 🖩 🛲 🗠 🞯 📖 🐼 🕺 🐼 🖾 📼 🗉 🖼 🐨 🖼 👘 🗊 🖉 🖴 🖉 🥠 🚚 🔲 Internal Heat Exchanger 🛛 🗆 With Subcooler -Evaporator Type-C Flooded Evaporator Compressor Warnings • DEX Bock EX-HG 12F/ 60 4S Compressor speed is higher than 1450 [min^{A1}]. Use a bigger compressor. V_S = 0,00006207 [m³] RPM = 7485 [min⁻¹] f_Q = 0 [%] Internal heat exchanger Pump $\eta_{is,Pump} = 0.8$ $\Delta P_{CD} = 0.5$ [bar] η_{RHE} = 0,6 UA_{RHE} = ???? [kW/K] T_{cold,return} = 20 [C] Thot, supply = 60 [C] (2) í 1 Hot system N_{cvcles} = 3 3 Evaporator harg Stor age $\Delta T_{miN,EV} = 5 [K]$ UA_{EV} = 1,233 [kW/K] ΔT_{SH} = 5 [C] Calculate V_{Tark} from t_{Cycle} and Q_{Frecess,het} QProcess,hot = 10 [kW] 4 t_{cycle} = 300 [s] V_{Tank} = 0,05383 [m³] Results ୢୢୢୢୄୢୢ (5) COP_{total} = 4,113 T_{hot,return} = 20 [C] T_{cold,supply} = 10 [C] T_{ref.max} = 75,93 [C] Condenser $\Delta T_{miN,CD} = 5 [K]$ 😥 Initialize t_{Charge} = 900 [s] ref\$= R600a UACD = 0,9632 [kW/K] Ŧ mwater,hot = 0,1794 [kg/s] UA_{Desup} = 0,1147 [kW/K] EES Calculate m_{Water,regulate} = 0,05413 [kg/s] Register N_Cycle Regulation = 30,17 [%] M Show plot Save Inputs

Assumptions

- Quasi-steady-state model
- Ideally stratified tanks without heat losses
- Same number of circulations through condenser and evaporator
- Constant water mass flow throughout the charging
- Constant compressor speed
- Constant UA-value for all HEX

Working fluid	R717	R600a
Compressor suction superheat [K]	0	5
Max. discharge temperature [°C]	180	180
Pinch point temperature difference [K]	5	5
Pressure drop in condenser and evaporator [bar]	0.5	0.5
Pump isentropic efficiency [-]	0.8	0.8
Compressor model	Sabroe HPX-708	Bock EX-HG 12P/60 4S

COP over N

Maximum COP improvement

Influence on heat exchanger size

Discussion

- Neglected heat transfer, mixing and heat loss in tanks
- Dynamic behaviour of heat pump
 - Thermal inertia
 - Control strategy
- Sudden increase in evaporation pressure
 - Potential problem with condensation in suction line

Gradual heating — Gradual heating and cooling

Conclusion

- Using the ISECOP system can improve the performance of a heat pump providing district heating and cooling
 - Gradual heating: 20.2 % (R600a) & 9.7 % (R717)
 - Gradual heating and cooling: 22.2 % (R600a) & 13.6 % (R717)
- Gradual heating and cooling leads to increase in evaporator size
 - Investment costs will be significantly higher than for conventional heat pump and gradual heating

Thank you for your attention!

René Kofler

Technical University of Denmark renekof@mek.dtu.dk +45 45254181

11 September 2019 DTU Mechanical Engineering