

LOCAL THERMAL GRIDS WITH WASTE HEAT UTILIZATION: LOW- OR MEDIUM-TEMPERATURE SUPPLY?

HANNE KAUKO, DANIEL ROHDE, EIRIN SUNDAL, JØRGEN KIHLE, ARMIN HAFNER SINTEF ENERGY RESEARCH / NTNU

SMART ENERGY SYSTEMS CONFERENCE, COPENHAGEN 10.-11.9.2019

ULEANGEN 05.07.2018

LTTG+ – Low-Temperature Thermal Grids with surPlus heat utilization

- Duration: 2018-2020
- Budget: 6.25 MNOK
 - 80% from the Research Council of Norway
- Partners:
 - Statkraft Varme AS
 - Fortum Oslo Varme AS
 - Trondheim Municipality
 - Gjøvik Municipality
 - Koteng Eiendom AS

3 case study areas:

New building areas in 3 Norwegian cities

- Trondheim Leangen
 - Waste heat from an indoor ice rink
- Gjøvik Huntonstranda
 - Waste heat available from a potato processing factory
- Oslo Furuset
 - High-temperature seasonal storage in boreholes
 - Charging over the summer with excess heat from the DH grid (municipal waste combustion)

Case Leangen

Building type	BRA [m ²]
Apartment	139 300
Nursing home	12 000
Nursery	2 000
School	4 000
Office	10 000
Commercial	7 000
Sports	7 000
Tot	181 300

() SINTEF

Case Leangen

Tota annual waste heat vs. heating demand for the different building phases 6000 5000 Heating 4000 demand [4MM] 3000 [MWh] Available 2000 waste heat [MWh] 1000 0 Phase 1 Phase 2 Phase 3 **SINTEF**

Problem description

Low vs. medium temperature distribution?

- Low-temperature distribution: T_{supply} ~ 40°C
 - Waste heat from ice rink can be utilized directly
 - Low heat losses
 - Local CO₂ heat pumps needed for domestic hot water (DHW) production
- Medium temperature distribution: T_{supply} ~ 70°C
 - The local heating grid can cover the entire heating demand (space heating + DHW)
 - Centralized NH₃ heat pump to increase the temprature of the waste heat to the required level

Problem description

Heat central

- Exchanges heat directly with the waste heat source
- Supplementary heat from the primary DH grid

• Building substation

- Space heating heat exchanger supplying heat to a floor heating loop at 35°C
- CO₂ heat pump
 - DHW setpoint 85°C due to accumulation
 - Dimensioned to produce 1.5 m³ hot water at a constant mass flow rate for a building block of 1400m² / 20 apartments

SINTEF

Problem description

8

• Heat central

- NH₃ heat pump to lift the temperature of the waste heat source
- Supplementary heat from the primary DH grid

• Building substation

- Regular substation with parallel heat exchangers towards space heating and DHW production
- DHW setpoint 65°C (no accumulation)
- Space heating setpoint 35°C

SINTEF

Methodology

- Aggerageted load profile obtained using a load profile generator developed in SINTEF Community/FME ZEN¹
- Data for waste heat obtained from the ice rink operator
- Steady-state heat pump models in Excel to verify modeling results

¹Lindberg et al., 2019. Modelling electric and heat load profiles of non-residential buildings for use in long-term aggregate load forecasts. Journal of Utilities Policy, Vol. 28, pp. 63-88, 2019.

Methodology

Modelling with Modelica/Dymola

- Component models for thermal grid modeling from a house-made library built in previous projects^{2,3}
- Heat pump model³
 - Based on the theoretical Lorentz cycle
 - Lorentz COP (COP₁) calculated from both inlet and outlet temperatures on the secondary sides

 $COP_{L} = \frac{T_{L_evap}}{T_{L_cond} - T_{L_evap}} \qquad T_{L_cond/evap} = \frac{T_{in_sec_cond/evap} - T_{out_sec_cond/evap}}{\ln\left(\frac{T_{in_sec_cond/evap}}{T_{out_sec_cond/evap}}\right)}$

• Heat pump COP calculated using a Lorentz efficiency of 0.15

 $COP_{HP} = COP_L \cdot \eta_L$

² Kauko, H., Kvalsvik, K. H., Rohde, D., Nord, N., & Utne, Å. (2018). Dynamic modeling of local district heating grids with prosumers: A case study for Norway. *Energy*, *151*, 261-271.

³ Rohde, D., Andresen, T., & Nord, N. (2018). Analysis of an integrated heating and cooling system for a building complex with focus on long–term thermal storage. *Applied Thermal Engineering*, *145*, 791-803.

Results – heat inputs and outputs

Mass flow

13

Heat pump COP

() SINTEF

14

Conclusions

Collaboration between DH suppliers, real estate companies and municipalities + getting involved early in the planning process

Conclusions

	Pros	Cons
40-decentralized	 Lower power demand Lower heat losses Low exergy losses in space heating Easier to combine with cooling production 	 More complex operation and maintenance → Need skilled staff High costs: 25-30 k€ per unit Higher DH demand
70-centralized	Simpler O&MLower costs	 Higher power demand High exergy losses in space heating Higher heat losses

Future work

- More detailed modeling of the network
- Modeling and optimization of the DHW accumulation with respect to electricity prices?
- Studying the potential for thermal storage at the heat central to improve the utilization of waste heat
- Including the utilization of grey water

Hanne.kauko@sintef.no

Koteng

TRONDHEIM KOMMUNE

