5th International Conference on Smart Energy Systems Copenhagen, 10-11 September 2019 #SESAAU2019

Enhanced Biomass CHP plants for district heating systems

Mei Gong Sven Werner Halmstad University

Powered by

Outline

- Background
- Thermodynamic analysis
- Case study
- Comparison of various simulations
- Conclusion

Background

Harbin, China: Six large AHP with a total capacity of 225 MW Datong, China:

Two AHPs were installed for two turbines

One AHP in a central substation The benefit of the entire installation was

- increased heat recycling of low-grade heat by 1.9 PJ (0.53 TWh) each year
- lower emissions of dust, SO₂, NO_x and CO₂ since coal was used as fuel

Characteristics concerning heat deliveries and net temperature

	China	Sweden				
DH source share	Coal (91%)	Biomass and waste (67%)				
	Oil products (4.5%)	Large heat pumps (10 %)				
	Natural gas (3%)	Industrial heat recovery (8%)				
	Renewables (1.5%)	Fossil fuel (15%)				
	in 2010 (IEA, 2011)	in 2012				
DH supply share in 2012	CHP (46%)	CHP (41%)				
	Boilers (51%)	Boilers (41 %)				
	Others (2%)	External heat (18%)				
Annual average from/return temperature [°C]	90-130/60	86/47				

Research Questions

- Is this Chinese concept concerning Combined Heat and Power (CHP) plants suitable for typical Swedish conditions with biomass as fuel?
- Will it be a path to transfer 3GDH to 4GDH? (No answer today)

Thermodynamic analysis

CHP vs CHP + Electric HP

Lowe, R. (2011). Combined heat and power considered as a virtual steam cycle heat pump. *Energy Policy*, *39*(9), 5528-5534.

Heat pumps

Electric heat pump

Absorption heat pump

4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 - #SES4DH2018

Carnot efficiency

Case Study

The Örtofta CHP plant, outside Lund

- 38 MW electricity
- 90 MW heat, including 16 MW from the FGC unit
- Biomass fuel input of 123 MW based on LHV.

Ideal

A simple CHP plant without AHP

A simple CHP plant with AHP

District heat

Overview of independent, fixed, and dependent variables in the simulation model

Independent variables	Fixed variables	Dependent variables				
 Return temperature after AHP Return temperature from DH network 	 Fuel input: 141 MW in HHV Conversion efficiency of boiler: 91.78% Steam to turbine: 540 °C, 11.1 MPa, and 44 kg/s Isentropic efficiency of turbine: 86.5% Conversion efficiency of generator: 95% Number of Thermal Units (NTU) of turbine condenser: 2.1 Feed water pumping Preheaters before boiler DH mass flow of 532.1 kg/s COP for AHP: 0.7 	 Steam flow to AHP Steam flow to condenser Steam temperature in condenser Steam flow to feed water tank Electricity generated Heat generated in FGC Heat generated in condenser Heat generated in AHP Supply temperature to DH network 				

Overview of key parameters for the simulated case in the CHP plant

	Ref.	3GDH+AHP					4GDH			
DH circle										
Return temperature after AHP [°C]	50	45	40	35	30	25	23.6	30	25	20
Supply temperature after condenser [°C]	91.4	80.6	69.9	59.3	48.9	38.6	35.1	73.9	69.1	64.2
Supply temperature to DH network [°C]	91.4	92.7	94.1	95.7	97.4	99.3	99.2	73.9	69.1	64.2
Steam circle										
Steam flow to AHP [kg/s]	_	7.5	14.9	22.4	29.9	37.4	39.4	-	-	-
Steam flow to condenser [kg/s]	35.6	28.4	21.5	14.9	8.5	2.3	-	34.5	34.2	33.9
Steam flow to feed water tank [kg/s]	4.5	4.2	3.6	2.8	1.7	0.4	-	5.5	5.8	6.1
Steam temperature in condenser [°C]	96.2	84.4	72.7	61.3	50	38.9	-	78.5	73.7	68.7
Output										
Electricity generated [MW]	35.7	35.4	34.4	32.9	30.7	27.9	26.7	38.2	38.9	39.5
Heat generated in FGC [MW]	16.9	19.3	21.5	23.3	24.8	26.0	26.3	24.8	26.0	27.C
Heat generated in condenser [MW]	76.1	60.5	45.7	31.4	17.8	4.9	-	73.5	72.8	72.1
Heat generated in AHP [MW]		15.9	31.8	47.7	63.5	79.4	83.8	-	-	-
Total Heat generated [MW]	93	95.7	99	102.4	106.1	110.3	110.1	98.3	98.8	99.1

Results

Estimation of the electricity and the heat outputs

Payback times versus alternative heat and electricity costs

Heating 2018 - #SES4DH2018

Conclusions

- It is less suitable for the Swedish context with biomass back-pressure CHP plants.
- The Chinese context with utilization of existing condensation turbines is still interesting, since condenser heat can be recycled without major modification of existing turbines.
- However, we intend to repeat the analysis for a modified system solution.

Questions?