5<sup>th</sup> International Conference on Smart Energy Systems Copenhagen, 10-11 September 2019 #SESAAU2019

#### Machine Learning based State-Estimation in sector coupled Energy Systems

Steven de Jongh<sup>1,</sup> Felicitas Mueller<sup>1</sup> Presenting: Steven de Jongh



<sup>1</sup> Institute of Electric Energy Systems and High Voltage Technology (IEH), Karlsruhe Institute of Technology (KIT)



## Motivation:



4DH

## Motivation:



4DH

## Classical approach:

"What is the most likely system state based on our given measurements?"

Weighted-Least-Squares estimation:

AALBORG UN

## Drawbacks:

- Exact physical model of power system is needed  $\rightarrow h(x)$ 

- Sensor accuracies have to be estimated  $\rightarrow R$ 





## Machine learning approach:

Directly train the estimator from grid measurement data:



- No a-priori knowledge of the measurement accuracies needed
- Generalizes to deviations in grid parameters



## Scenario – chosen grid:



- 59 nodes

- 57 lines
- 400 V, 3~
- 5 PV generators
- Radial structure







### Scenario – different timesteps:

t1: Maximum load, 102.2 kW

t2: Minimum load, -5.72 kW

Zone 0 Zone 1 Zone 2

Zone 3 Zone 4 Zone 5 Zone 6



## Scenario – sensor configuration:



PMUs): Suboptimal PMU-configuration (31 PMUs):



Minimal number of used PMUs

Random choice of PMUs

**PMU** measures  $V_i$ ,  $P_i$ ,  $Q_i$ ,  $P_{ij}$ ,  $Q_{ij}$ 



#### Results I.



## Results II.



#### Results III.



## **Conclusion:**

- Artificial neural networks can be applied for energy system state estimation
- The estimation error of ML-based state estimation is for the given scenario better than the classical approach
- ML-based techniques offer multiple benefits, e.g. no explicit a-priori knowledge about the measurement noise has to be provided
- The presented approach scales well with systems that are not fully equipped with sensors



5<sup>th</sup> International Conference on Smart Energy Systems Copenhagen, 10-11 September 2019 #SESAAU2019

# Thank you for your attention!

#### **Questions?**

Powered by

Image: Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"

Colspan="2">Colspan="2"
Colspan="2">Colspan="2"
Colspan="2"
Colspan="2"
Colspan="2"
Colspan="2"
Colspan="2"

Colspan="2"

Colspan="2"

<th col

